Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Org Chem ; 89(7): 4560-4568, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38484322

RESUMEN

An anti-cryptophane decorated with three aromatic amine and three phenol groups shows a high affinity for the cesium and thallium cations in LiOH/H2O (0.1 M). The formation of the complexes was studied by 133Cs NMR and by 205Tl NMR spectroscopy at different temperatures. Characteristic signals for caged cesium and thallium were observed at a high field with respect to the signals of the free cations present in the bulk. Isothermal titration calorimetric experiments performed in LiOH/H2O (0.1 M) and NaOH/KCl buffer (pH = 13) allowed us to determine the parameter of complexation and to ascertain the high affinity of this cryptophane for cesium and thallium. A comparison with other cryptophanes that bind these two cations shows that the introduction of nitrogen atoms into the cryptophane backbone has an effect on the binding properties. The affinity for cesium and thallium(I) ions is in the following order of substitution: OH > NH2 > OCH2COOH. This study paves the way to the design of new efficient host molecules for the extraction of these two cations in aqueous solution.

2.
J Org Chem ; 87(7): 4926-4935, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35276045

RESUMEN

Phenoxazines, in particular N-arylated phenoxazines, represent an increasingly important scaffold in the material sciences. Moreover, the oxygen-gas-mediated dehydrogenative phenochalcogenazination concept of phenols has been developed and exemplified for X = sulfur and recently for X = selenium and tellurium. The smallest chalcogen, X = oxygen, is herein exemplified with various functional groups under a likewise trivial oxygen atmosphere.


Asunto(s)
Fenoles , Selenio , Oxígeno , Azufre , Telurio
3.
J Am Chem Soc ; 141(29): 11583-11593, 2019 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-31251054

RESUMEN

Among the various types of chirality (central, axial, helical, planar, etc.), that inherent to Möbius topology remains almost unexplored, partly due to the difficulty to access Möbius compounds. Over the past decade, [28]hexaphyrins have been revealed to be among the best candidates to build on Möbius aromaticity. Whereas their flexibility needs to be controlled to get P/M twist enantioselectivity, it could be of great interest to sustain dynamic chirality transfer. In this context, we report herein the first example of a Möbius aromatic ring capped by a cavity, consisting of a Möbius [28]hexaphyrin doubly linked to an α-cyclodextrin. This unique design affords a "totem" of three different chirality elements arising from the cyclodextrin (fix central chirality), the bridging pattern (dynamic planar chirality), and the hexaphyrin (dynamic topological chirality). Chirality transfers (as shown in the TOC graphic) are characterized by a stereospecific planar-to-topological communication (diastereomeric excess >95%; the highest asymmetric selectivity reported to date for a Möbius ring) combined to a stereoselective central-to-planar communication (up to 60% diastereomeric excess). Interestingly, the stereoselectivity is remotely controlled by coordination of an achiral effector to the hexaphyrin, increasing up to 5 times the chiroptical response of the Möbius aromatic π-system. These results highlight the advantageous use of dynamic chirality transfers to further incorporate Möbius chirality and aromaticity into all kinds of stimuli-responsive devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA