Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Comput Chem ; 45(23): 2034-2041, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-38733370

RESUMEN

The outcomes of DFT-based calculations are here reported to assess the applicability of two synthesized polypyridyl Ru(II) complexes, bearing ethynyl nile red (NR) on a bpy ligand, and two analogues, bearing modified-NR, in photodynamic therapy. The absorption spectra, together with the non-radiative rate constants for the S1 - Tn intersystem crossing transitions, have been computed for this purpose. Calculations evidence that the structural modification on the chromophore destabilizes the HOMO of the complexes thus reducing the H-L gap and, consequently, red shifting the maximum absorption wavelength within the therapeutic window, up to 620 nm. Moreover, the favored ISC process from the bright state involves the triplet state closest in energy, which is also characterized by the highest SOC value and by the involvement of the whole bpy ligand bearing the chromophore in delocalising the unpaired electrons. These outcomes show that the photophysical behavior of the complexes is dominated by the chromophore.

2.
J Comput Chem ; 45(24): 2059-2070, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38741357

RESUMEN

Graphene is the newest form of elemental carbon and it is becoming rapidly a potential candidate in the framework of nano-bio research. Many reports confirm the successful use of graphene-based materials as carriers of anticancer drugs having relatively high loading capacities compared with other nanocarriers. Here, the outcomes of a systematic study of the adsorption behavior of FDA approved PtII drugs cisplatin, oxaliplatin, and carboplatin on surface models of pristine, holey, and nitrogen-doped holey graphene are reported. DFT investigations in water solvent have been carried out considering several initial orientations of the drugs with respect to the surfaces. Adsorption free energies, calculated including basis set superposition error (BSSE) corrections, result to be significantly negative for many of the drug@carrier adducts indicating that tested layers could be used as potential carriers for the delivery of anticancer PtII drugs. The reduced density gradient (RDG) analysis allows to show that many kinds of non-covalent interactions, including canonical H-bond, are responsible for the stabilization of the formed adducts.


Asunto(s)
Antineoplásicos , Cisplatino , Teoría Funcional de la Densidad , Portadores de Fármacos , Grafito , Grafito/química , Antineoplásicos/química , Cisplatino/química , Portadores de Fármacos/química , Carboplatino/química , Nanoestructuras/química , Oxaliplatino/química , Sistemas de Liberación de Medicamentos , Adsorción , Compuestos Organoplatinos/química
3.
Dalton Trans ; 53(19): 8243-8253, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38654633

RESUMEN

Polypyridyl Ru(II) complexes have attracted much attention due to their potential as light-activatable anticancer agents in photoactivated chemotherapy (PACT). The action of ruthenium-based PACT compounds relies on the breaking of a coordination bond between the metal center and an organic ligand via a photosubstitution reaction. Here, a detailed computational investigation of the photophysical properties of a novel trisheteroleptic ruthenium complex, [Ru(dpp)(bpy)(mtmp)]2+ (dpp = 4,7-diphenyl-1,10-phenanthroline, bpy = 2,2'-bipyridine and mtmp = 2-methylthiomethylpyridine), has been carried out by means of DFT and its time-dependent extension. All the aspects of the mechanism by which, upon light irradiation, the mtmp protecting group is released and the corresponding aquated complex, able to bind to DNA inducing cell death, is formed have been explored in detail. All the involved singlet and triplet states have been fully described, providing the calculation of the corresponding energy barriers. The involvement of solvent molecules in photosubstitution and the role played by pyridyl-thioether chelates as caging groups have been elucidated.

4.
Dalton Trans ; 52(38): 13517-13527, 2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37718620

RESUMEN

Targeting of G-quadruplex (G-Q) nucleic acids, which are helical four-stranded structures formed from guanine-rich nucleic acid sequences, has emerged in recent years as an appealing opportunity for drug intervention in anticancer therapy. Small-molecule drugs can stabilize quadruplex structures, promoting selective downregulation of gene expression and telomerase inhibition and also activating DNA damage responses. Thus, rational design of small molecular ligands able to selectively interact with and stabilize G-Q structures is a promising strategy for developing potent anti-cancer drugs with selective toxicity towards cancer cells over normal ones. Here, the outcomes of a thorough computational investigation of a recently synthesized monofunctional PtII complex (Pt1), whose selectivity for G-Q is activated by what is called adaptive binding, are reported. Quantum mechanics and molecular dynamics calculations have been employed for studying the classical key steps of the mechanism of action of PtII complexes, the conversion of the non-charged and non-planar Pt1 complex into a planar and charged PtII (Pt2) complex able to play the role of a G-Q binder and, finally, the interaction of Pt2 with G-Q. The information obtained from such an investigation allows us to rationalize the behavior of the novel PtII complex proposed to be activated by adaptive binding toward selective interaction with G-Q or similar molecules and can be exploited for designing ligands with more effective recognition ability toward G-quadruplex DNA.


Asunto(s)
Antineoplásicos , G-Cuádruplex , ADN/química , Antineoplásicos/farmacología , Antineoplásicos/química , Secuencia de Bases , Ligandos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA