Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(6)2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38592795

RESUMEN

Dredged sediment contaminated with heavy metals can be remediated through phytoremediation. The main challenge in phytoremediation is the limited availability of heavy metals for plant uptake, particularly in multi-contaminated soil or sediment. This study aimed to assess the effect of the nitrogen fertilizers (ammonium nitrate (AN), ammonium sulfate (AS), and urea (UR)), organic acids (oxalic (OA) and malic (MA) acids), and their combined addition to sediment on enhancing the bioavailability and phytoremediation efficiency of heavy metals. The sediment dredged from Begej Canal (Serbia) had high levels of Cr, Cd, Cu, and Pb and was used in pot experiments to cultivate energy crop rapeseed (Brassica napus), which is known for its tolerance to heavy metals. The highest accumulation and translocation of Cu, Cd, and Pb were observed in the treatment with AN at a dose of 150 mg N/kg (AN150), in which shoot biomass was also the highest. The application of OA and MA increased heavy metal uptake but resulted in the lowest biomass production. A combination of MA with N fertilizers showed high uptake and accumulation of Cr and Cu.

2.
Environ Monit Assess ; 195(3): 437, 2023 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-36862210

RESUMEN

Bioavailability and movement of pollutants through land and underground flows are strongly related to some of the sediment characteristics, such as clay minerals and organic matter. Therefore, the determination of clay and organic matter content in sediment is of great importance for environmental monitoring. Clay and organic matter in sediment were determined using diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in combination with multivariate analysis methods. Sediment from different depths was used in combination with the soil samples of different texture. Using multivariate methods and DRIFT spectra, sediments from different depths were successfully grouped according to similarity to different texture soils. Also, a quantitative analysis of clay and organic matter content was performed, where a new calibration approach was used in which sediment samples combined with soil samples were used for principal component regression (PCR) calibration. PCR models for the assessment of clay and organic matter were determined for a total of 57 sediment samples and 32 soil samples, and satisfactory determination coefficients were obtained for linear models (0.7136 for clay and 0.7062 for organic matter). The obtained RPD values for both models gave very satisfactory values of 1.9 for clay, i.e., 1.8 for organic matter.


Asunto(s)
Monitoreo del Ambiente , Suelo , Arcilla , Calibración , Disponibilidad Biológica
3.
Sci Total Environ ; 843: 157122, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-35787901

RESUMEN

In Europe alone, >200 million m3 of river sediments are dredged each year, part of which are contaminated to such an extent that they have to be landfilled. This study compares the use of biochar and hydrochar for the remediation of sediment contaminated with pentachlorobenzene, hexachlorobenzene, lindane, trifluralin, alachlor, simazine, and atrazine with the motivation to make sediments contaminated by such priority substances usable as arable land for growing energy crops. Biochar and hydrochar originating from Miscanthus giganteus and Beta vulgaris shreds were compared for their potential to reduce contaminant associated risk in sediments. Specifically, by investigating the effects of sorbent amendment rate (1, 5, and 10 %) and incubation time (14, 30, and 180 d) on contaminant bioaccessibility, toxicity to the bacteria Vibrio fischeri, as well as toxicity and plant uptake in Zea mays. Biochar reduced contaminant bioaccessibility up to five times more than hydrochar. The bioaccessibility of contaminants decreased up to sevenfold with increasing incubation time, indicating that the performance of carbonaceous sorbents may be underestimated in short-term lab experiments. Biochar reduced contaminants toxicity to Vibrio fischeri, whereas hydrochar was itself toxic to the bacteria. Toxicity to Zea mays was determined by contaminant bioaccessibility but also sorbent feedstock with cellulose rich Beta vulgaris based sorbents exhibiting toxic effects. The plant uptake of all contaminants decreased after sorbent amendment.


Asunto(s)
Sedimentos Geológicos , Ríos , Carbón Orgánico , Productos Agrícolas , Zea mays
4.
Chemosphere ; 263: 127816, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32835965

RESUMEN

This study investigates the performance of oak (OL) and mulberry (ML) leaves for synthesized of nanoscale zero-valent iron (nZVI), in immobilizing Cu and Ni in contaminated sediment. Characterization of synthesized Fe nanoparticles from oak and mulberry leaf extracts demonstrated that they are nontoxic and stabile nanomaterials for application in the sediment remediation. Effectiveness of stabilization process was performed by microwave-assisted sequential extraction procedure (MWSE) and single-step leaching tests which have been applied to evaluate the metal extraction potential. This research showed that OL-nZVI and ML-nZVI were effective in transforming available Cu and Ni to stable fraction. The maximum residual percentage of Cu increased by 76% and 73%, and for Ni 81% and 80%, respectively, with addition of 5% OL-nZVI and 5% ML-nZVI. Used single-step leaching tests (Toxicity Characteristic Leaching Procedure-TCLP and German standard test- DIN) indicated that all stabilized samples can be considered as non-hazardous waste, as all leached metal concentrations met the appropriate set criteria. Cost analysis showed that the operating cost for contaminated sediment treatment with green synthesized nZVI are 50.37 €/m3/per year. This work provides a new insight into the immobilization mechanism and environmental impact of Cu and Ni in contaminated sediment and potential way of treatment with OL-nZVI and ML-nZVI. Generally, nZVI can be an effective and versatile tool for stabilization of sediment polluted with toxic metals.


Asunto(s)
Restauración y Remediación Ambiental , Morus , Contaminantes del Suelo , Análisis Costo-Beneficio , Hierro , Extractos Vegetales , Ríos
5.
Recent Pat Nanotechnol ; 15(3): 183-196, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33334300

RESUMEN

BACKGROUND: Environmental pollution has been a recognized problem for human health and the ecosystem. Remediation is usually costly and time-consuming, so researchers' attention has been drowning to develop and use new materials. This review aims to summarize the recent development of carbon-based materials used for environmental management. METHODS: We conducted a detailed analysis of available literature based on the Web of Science database. In the third part of the manuscript are given some of the recent patents on carbon-based materials. The corresponding papers were carefully evaluated. RESULTS: More than one hundred and ninety papers were included in section literature. Based on the available literature it an increasing trend in carbon-based material usage can be observed. These materials are used in resolving environmental issues: adsorbents in water and wastewater treatment; precursor of catalysts, soil improvement, waste management, climate change mitigation, electrochemical energy storage and soil remediation adsorption processes. Although it is a mainly new approach considered as environmentally friendly, there are finding, observation, negative aspects, and conclusion that must be taken into consideration. CONCLUSION: The findings of this review confirm that many factors must be considered when carbon- based materials are used. At the same time, this review aims to emphasize development trends in providing a useful guide to design and fabricate high-efficiency and low-cost carbon materials.

6.
J Environ Manage ; 239: 352-365, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-30921754

RESUMEN

Phytotechnologies have been used worldwide to remediate and restore damaged ecosystems, especially those caused by industrial byproducts leaching into rivers and other waterways. The objective of this study was to test the growth, physiology, and phytoextraction potential of poplar and willow established in soils amended with heavy-metal contaminated, dredged river sediments from the Great Backa Canal near Vrbas City, Serbia. The sediments were applied to greenhouse-grown trees of Populus deltoides Bartr. ex Marsh. clone 'Bora' and Salix viminalis L. clone 'SV068'. Individual pots with trees previously grown for two months were amended with 0, 0.5 and 1.0 kg of sediment containing 400 mg Cr kg-1, 295 mg Cu kg-1, 465 mg Zn kg-1, 124 mg Ni kg-1, 1.87 mg Cd kg-1, and 61 mg Pb kg-1. Following amendment, trees were grown for two seasons (i.e., 2014, 2015), with coppicing after the first season. In addition to growth parameters, physiological traits related to the photosynthesis and nitrogen metabolism were assessed during both growing seasons. At the end of the study, trees were harvested for biomass analysis and accumulation of heavy metals in tree tissues and soils. Application of sediment decreased aboveground biomass by 37.3% in 2014, but increased height (16.4%) and leaf area (19.2%) in 2015. Sediment application negatively impacted the content of pigments and nitrate reductase activity, causing them to decrease over time. Generally, the effect of treatments on growth was more pronounced in poplars, while willows had more pronounced physiological activity. Accumulation patterns were similar to previously-published results. In particular, Zn and Cd were mostly accumulated in leaves of both poplar and willow, which indicated successful phytoextraction. In contrast, other metals (e.g., Cr, Ni, Pb, Cu) were mostly phytostabilized in the roots. Differences in metal allocation between poplar and willow were recorded only for Cu, while other metals followed similar distribution patterns in both genera. Results of this study indicated that the composition of heavy metals in the sediments determined the mechanisms of the applied phytoremediation technique.


Asunto(s)
Metales Pesados/análisis , Populus/química , Populus/crecimiento & desarrollo , Ríos/química , Salix/química , Salix/crecimiento & desarrollo , Suelo/química , Biomasa , Sedimentos Geológicos/química , Fotosíntesis , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Populus/metabolismo , Salix/metabolismo , Serbia , Contaminantes del Suelo/análisis , Árboles/química , Árboles/metabolismo
7.
Chemosphere ; 220: 1033-1040, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33395789

RESUMEN

Sediment represents a sink for toxic and persistent chemicals such as hexachlorobenzene (HCB) and lindane (γ-HCH). This paper investigates the possibility of reducing the risks associated with the presence of these pollutants in sediments by amending the sediment with carbon-rich materials (activated carbon (AC) and humus (HC)) to sequester the contaminants and render them biologically unavailable. The effects of the dose and contact time between the sediment and the carbon-rich amendments on the effectiveness of the detoxification are estimated. Four doses of carbon-rich amendments (0.5-10%) and four equilibration contact times (14-180 days) were investigated. Results have shown that the bioavailable fraction of γ-HCH and HCB decreased significantly in comparison to the unamended sediment. Regarding the AC amendments, almost 100% for both compounds; and for HC amendments around 95% for γ-HCH, and 75% for HCB. Aging caused further reductions in the bioavailable fraction, compared to the untreated sediment. Phytotoxicity tests showed that Zea mays accumulated significantly higher amount of γ-HCH and HCB from unamended sediment, comparing to Cucurbita pepo and Lactuca sativa. Toxicity of HC and AC amended sediment assessed by Vibrio fischeri luminescence inhibition test and by measuring Zea mays germination and biomass yield was significantly reduced in the amended sediment samples. γ-HCH and HCB accumulation in the Zea mays biomass in the unamended sediment were a significantly higher than in the all HC and AC amended sediment. Both sorbents show potential to be used as remediation agents for organically contaminated sediment, but AC exhibited the better performance.

8.
J Hazard Mater ; 365: 467-482, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30453240

RESUMEN

Polycyclic aromatic hydrocarbons (PAHs) are amongst the most abundant contaminants found in the aquatic environment. Due to their toxicity and carcinogenicity, their sources, fate, behaviour, and cleanup techniques have been widely investigated in the last several decades. When entering the sediment-water system, PAH fate is determined by particular PAH and sediment physico-chemical properties. Most of the PAHs will be associated with fine-grained, organic-rich, sediment material. This makes sediment an ultimate sink for these pollutants. This association results in sediment contamination, and in this manner, sediments represent a permanent source of water pollution from which benthic organisms may accumulate toxic compounds, predominantly in lipid-rich tissues. A tendency for biomagnification can result in critical body burdens in higher trophic species. In recent years, researchers have developed numerous methods for measuring bioavailable fractions (chemical methods, non-exhaustive extraction, and biomimetic methods), as valuable tools in a risk-based approach for remediation or management of contaminated sites. Contaminated sediments pose challenging cleanup and management problems, as conventional environmental dredging techniques are invasive, expensive, and sometimes ineffective or hard to apply to large and diverse sediment sites. Recent studies have shown that a combination of strategies including in situ approaches is likely to provide the most effective long-term solution for dealing with contaminated sediments. Such in situ approaches include, but are not limited to: bioaugmentation, biostimulation, phytoremediation, electrokinetic remediation, surfactant addition and application of different sorbent amendments (carbon-rich such as activated carbon and biochar) that can reduce exposure and limit the redistribution of contaminants in the environment.


Asunto(s)
Restauración y Remediación Ambiental/métodos , Sedimentos Geológicos/química , Hidrocarburos Policíclicos Aromáticos/análisis , Contaminantes Químicos del Agua/análisis , Disponibilidad Biológica , Unión Europea , Hidrocarburos Policíclicos Aromáticos/farmacocinética , Medición de Riesgo , Contaminantes Químicos del Agua/farmacocinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA