Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sensors (Basel) ; 20(19)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33003353

RESUMEN

Immobilization of proteins on a surface plasmon resonance (SPR) transducer is a delicate procedure since loss of protein bioactivity can occur upon contact with the untreated metal surface. Solution to the problem is the use of an immobilization matrix having a complex structure. However, this is at the expense of biosensor selectivity and sensitivity. It has been shown that the matrix-assisted pulsed laser evaporation (MAPLE) method has been successfully applied for direct immobilization (without a built-in matrix) of proteins, preserving their bioactivity. So far, MAPLE deposition has not been performed on a gold surface as required for SPR biosensors. In this paper we study the impact of direct immobilization of heme proteins (hemoglobin (Hb) and myoglobin (Mb)) on their bioactivity. For the purpose, Hb and Mb were directly immobilized by MAPLE technique on a SPR transducer. The bioactivity of the ligands immobilized in the above-mentioned way was assessed by SPR registration of the molecular reactions of various Hb/Mb functional groups. By SPR we studied the reaction between the beta chain of the Hb molecule and glucose, which shows the structural integrity of the immobilized Hb. A supplementary study of films deposited by FTIR and AFM was provided. The experimental facts showed that direct immobilization of an intact molecule was achieved.


Asunto(s)
Técnicas Biosensibles , Hemoglobinas/análisis , Proteínas Inmovilizadas/análisis , Mioglobina/análisis , Resonancia por Plasmón de Superficie , Oro
2.
Data Brief ; 30: 105641, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32420429

RESUMEN

Matrix-assisted pulsed laser evaporation (MAPLE) is an alternative and complimentary method to pulsed laser deposition. MAPLE has been demonstrated to be a less harmful approach for transporting and depositing delicate, highly sensitive molecules. Metalloproteins are considered sensitive molecules since their bioactivity is determined not only by their chemical structure but also by conformational changes that can be altered by deposition methods. Here we report a dataset of MAPLE deposition parameters of haemoglobin (Hb) that ensures the retention of its bioactivity. Methods for parameters optimization are also described. The data and analysis should be valuable for researchers interested in application of MAPLE techniques for metalloprotein immobilization since it provides a unique opportunity for direct immobilization. The data presents the results of previously conducted experiments on the basis of which is based the research article entitled "A Highly Efficient Biosensor based on MAPLE Deposited Hemoglobin on LPGs Around Phase Matching Turning Point" [1].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA