Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 8(31): 28060-28079, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37576656

RESUMEN

In situ combustion (ISC) is one of the oldest thermal enhanced oil recovery methods to have been applied in Venezuela to increase the production of highly viscous crude oils, with a first field application in 1959 in the Tia Juana Field-Lake Maracaibo Basin. This method, which is characterized by high energy efficiency, consists of injecting air into the reservoir where exothermic oxidation reactions initiate to increase the mobility of the oil. Compared to other thermal enhanced oil recovery methods such as steam injection, ISC has a lower environmental impact in terms of water and fuel consumption, and emission of gases as the produced gases can be reinjected or stored. Several ISC projects have been carried out in Venezuela in Tia Juana, Morichal, Miga, and Melones fields. Although the technical results have been satisfactory in terms of viscosity reduction and improved crude oil properties (such as °API), other important aspects of project evaluations have not been convincing due to the following factors: high temperatures in producing wells, acid gases management, generation of complex emulsions, corrosion, and high CAPEX and OPEX costs. Nevertheless, additional research work has been conducted on process optimization, using catalysts and hydrogen donors, to better address these other factors. Due to the great need to increase hydrocarbon production in Venezuela and to the advantages of ISC as an upgrading technique where low-carbon fuels and hydrogen as byproducts are generated, this paper presents a revisit of ISC projects in Venezuela from R&D technical aspects to field applications. It seeks to identify the main insights regarding the success and failure of the evaluated projects and make substantiated recommendations in the case of future applications of this technology.

2.
ACS Omega ; 8(13): 11837-11851, 2023 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-37033837

RESUMEN

Misrepresentation of the wettability of a reservoir can lead to potentially low ultimate hydrocarbon recovery resulting in substantial economic losses. At the same time, it is impossible to determine the wettability of a reservoir across its length and breadth on a continuous basis using standard procedures. This work presents the development and standardization of a quick, easy, and low-cost wettability measurement method using the adherence tendency of rock particles in the oil or aqueous phase. The most important aspect of this study was establishing the optimum particle size for sustained floatation and balancing the buoyancy and gravity effect. The results show that the particles sink with a larger than optimum particle size because of the gravity effect. Similarly, the particles would float if they are smaller than optimum due to buoyancy and viscosity advantages. A new scale is designed, and the midpoint analysis shows that a 63-90 µm particle size is the ideal size range for the carbonate reservoir's wettability measurements, as the midpoint of the size distribution coincides with the standard Amott-Harvey (A-H) index. However, this size range is found to be wider for oil-wet particles. The floating particle method has several advantages over the established methods once standardized against a reliable process. Not only is the process fast but it can be performed with basic laboratory tools and does not require a high skill set. Most importantly, reliable wettability information can be obtained from drill cuttings and core fragments, enabling the determination of reservoir wettability on a continuum basis and not as a point basis, thus providing a more reliable average value, particularly for heterogeneous and unconsolidated reservoirs.

3.
ACS Omega ; 6(47): 31646-31657, 2021 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-34869988

RESUMEN

Hydraulic fracturing is a widely used technology to enhance the productivity of low-permeability reservoirs. Fracturing fluids using guar as the rheology builder leaves aside residual polymer layers over the fractured surface, resulting in a restricted matrix to fracture flow, causing reduced well productivity and injectivity. This research developed a specialized enzyme breaker and evaluated its efficiency in breaking linear and cross-linked guar-polymer gel as a function of time, temperature, and breaker concentration targeting a high-temperature carbonate reservoir. The study began with developing a high-temperature stable galacto-mannanase enzyme using the "protein-engineering" approach, followed by the optimization of fracturing fluids and breaker concentrations measuring their rheological properties. The thermal stability of the enzyme breaker vis-à-vis viscosity reduction and the degradation pattern of the linear and cross-linked gel observed from the break tests showed that the enzyme is stable and active up to 120 °C and can reduce viscosity by more than 99%. Further studies conducted using a high-temperature high-pressure HT-HP filter press for the visual inspection of polymer cake quality, filtration loss rates, and cake dissolution efficiency showed that a 6 h enzyme treatment degrades the filter cake by 94-98% compared to 60-70% degradation in 72 h of the natural degradation process. Coreflooding studies, under simulated reservoir conditions, showed the severity of postfracture damage (up to 99%), which could be restored up to 95% on enzyme treatment depending on the treatment protocol and the type of fracturing gel used.

4.
Chem Eng J ; 406: 127081, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-32989375

RESUMEN

Throughout the application of enhanced oil recovery (EOR), surfactant adsorption is considered the leading constraint on both the successful implementation and economic viability of the process. In this study, a comprehensive investigation on the adsorption behaviour of nonionic and anionic individual surfactants; namely, alkyl polyglucoside (APG) and alkyl ether carboxylate (AEC) was performed using static adsorption experiments, isotherm modelling using (Langmuir, Freundlich, Sips, and Temkin models), adsorption simulation using a state-of-the-art method, binary mixture prediction using the modified extended Langmuir (MEL) model, and artificial neural network (ANN) prediction. Static adsorption experiments revealed higher adsorption capacity of APG as compared to AEC, with sips being the most fitted model with R2 (0.9915 and 0.9926, for APG and AEC respectively). It was indicated that both monolayer and multilayer adsorption took place in a heterogeneous adsorption system with non-uniform surfactant molecules distribution, which was in remarkable agreement with the simulation results. The (APG/AEC) binary mixture prediction depicted contradictory results to the experimental individual behaviour, showing that AEC had more affinity to adsorb in competition with APG for the adsorption sites on the rock surface. The adopted ANN model showed good agreement with the experimental data and the simulated adsorption values for APG and AEC showed a decreasing trend as temperature increases. Simulating the impact of binary surfactant adsorption can provide a tremendous advantage of demonstrating the binary system behaviour with less experimental data. The utilization of ANN for such prediction procedure can minimize the experimental time, operating cost and give feasible predictions compared to other computational methods. The integrated workflow followed in this study is quite innovative as it has not been employed before for surfactant adsorption studies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA