Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Chromatogr A ; 1016(1): 21-33, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-14601825

RESUMEN

Several prototypes of multi-modal ligands suitable for the capture of negatively charged proteins from high conductivity (28 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal anion-exchangers were found by screening a diverse library of multi-modal ligands and selecting anion-exchangers resulting in elution of test proteins at high ionic strength. Candidates were then tested with respect to breakthrough capacity of BSA in a buffer adjusted to a high conductivity (20 mM Piperazine and 0.25 M NaCl, pH 6.0). The recovery of BSA was also tested with a salt step (from 0.25 to 2.0 M NaCl using 20 mM Piperazine as buffer, pH 6.0) or with a pH-step to pH 4.0. We have found that non-aromatic multi-modal anion-exchange ligands based on primary or secondary amines (or both) are optimal for the capture of proteins at high salt conditions. Furthermore, these new multi-modal anion-exchange ligands have been designed to take advantage not only of electrostatic but also hydrogen bond interactions. This has been accomplished through modification of the ligands by the introduction of hydroxyl groups in the proximity of the ionic group. Experimental evidence on the importance of the relative position of the hydroxyl groups on the ligand in order to improve the breakthrough capacity of BSA has been found. Compared to strong anion-exchangers such as Q Sepharose Fast Flow the new multi-modal weak anion-exchangers have breakthrough capacities of BSA at mobile phases of 28 mS/cm and pH 6.0 that are 20-30 times higher. The new multi-modal anion-exchangers can also be used at normal anion-exchange conditions and with either a salt step or a pH-step to acidic pH can accomplish the elution of proteins. In addition, the functional performance of the new anion-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 1 week. A number of multi-modal anion-exchange ligands based on aromatic amines exhibiting high breakthrough capacity of BSA have been found. With these ligands recovery was often found to be low due to strong non-electrostatic interactions. However, for phenol derived anion-exchange media the recovery can be improved by desorption at high pH.


Asunto(s)
Albúmina Sérica Bovina/aislamiento & purificación , Resinas de Intercambio Aniónico , Cromatografía por Intercambio Iónico/métodos , Enlace de Hidrógeno , Concentración de Iones de Hidrógeno , Concentración Osmolar , Albúmina Sérica Bovina/química , Hidróxido de Sodio/química
3.
J Chromatogr A ; 1016(1): 35-49, 2003 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-14601826

RESUMEN

Several prototypes of aromatic (Ar) and non-aromatic (NoAr) cation-exchange ligands suitable for capture of proteins from high conductivity (ca. 30 mS/cm) mobile phases were coupled to Sepharose 6 Fast Flow. These new prototypes of multi-modal cation-exchangers were found by screening a diverse library of multi-modal ligands and selecting cation-exchangers resulting in elution of test proteins at high ionic-strength. Candidates were then tested with respect to breakthrough capacity of bovine serum albumin (BSA), human IgG and lysozyme in buffers adjusted to a high conductivity. By applying a salt-step or a pH-step the recoveries were also tested. We have found that aromatic multi-modal cation-exchanger ligands based on carboxylic acids seem to be optimal for the capture of proteins at high-salt conditions. Experimental evidence on the importance of the relative position of the aromatic group in order to improve the breakthrough capacity at high-salt conditions has been found. It was also found that an amide group on the alpha-carbon was essential for capture of proteins at high-salt conditions. Compared to a strong cation-exchanger such as SP Sepharose Fast Flow the best new multi-modal weak cation-exchangers have breakthrough capacities of BSA, human IgG and lysozyme that are 10-30 times higher at high-salt conditions. The new multi-modal cation-exchangers can also be used at normal cation-exchange conditions and with either a salt-step or a pH-step (to pH-values where the proteins are negatively charged) to accomplish elution of proteins. In addition, the functional performance of the new cation-exchangers was found to be intact after treatment in 1.0 M sodium hydroxide solution for 10 days. For BSA it was also possible to design cation-exchangers based on non-aromatic carboxyl acid ligands with high capacities at high-salt conditions. A common feature of these ligands is that they contain hydrogen acceptor groups close to the carboxylic group. Furthermore, it was also possible to obtain high breakthrough capacities for lysozyme and BSA of a strong cation-exchanger (SP Sepharose Fast Flow) if phenyl groups were attached to the beads. Varying the ligand ratio (SP/Phenyl) could be used for optimizing the function of mixed-ligand ion-exchange media.


Asunto(s)
Proteínas/aislamiento & purificación , Cloruro de Sodio/química , Resinas de Intercambio de Catión , Cromatografía por Intercambio Iónico/métodos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Proteínas/química
4.
J Chromatogr A ; 1009(1-2): 111-7, 2003 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-13677651

RESUMEN

Chromatographically purified recombinant human serum albumin (rHSA), produced in genetically transformed yeast cells, was characterized using matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) MS techniques. The molecular mass of the intact protein was determined to be 66671, in good agreement with that of purified HSA which was used as a standard. The identity of rHSA to its natural counterpart was established with high precision using peptide mass fingerprinting of tryptic peptides. Partial amino acid sequence data for rHSA were obtained using Ettan CAF MALDI Sequencing Kit and post-source decay on the tryptic peptides. The results achieved provide strong evidence that MALDI-TOF-MS is an important analytical technique for characterising gene products and for establishing the identity and bio-compatibility of recombinant proteins relative to their natural counterparts.


Asunto(s)
Albúmina Sérica/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Humanos , Mapeo Peptídico , Proteínas Recombinantes/química , Tripsina/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA