Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Appl Clin Med Phys ; : e14481, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39133939

RESUMEN

This investigation aimed to optimize gradient positioning for radiochromic film calibration to facilitate a uniform distribution of calibration points. The study investigated the influence of various parameters on gradient dose profiles generated by a physical wedge, assessing their impact on the field's dose dynamic range, a scalar quantity representing the span of absorbed doses. Numerical parameterization of the physical wedge profile was used to visualize and quantify the impact of field size, depth, and energy on the dynamic range of dose gradients. This concept enabled the optimization of the gradient positioning and estimation of the necessary number of exposures for the desired calibration dose range. An optimization algorithm based on histogram bin height minimization was developed and presented. The maximum dynamic range was achieved with a 20 × $\times$ 20 cm 2 $\textrm {cm}^{2}$ field size at 5 cm depth. Optimization of wedge gradient positioning yielded the most uniform dose distribution with 7 exposures for the [1,10] Gy range and 8 exposures for the [1,20] Gy range. Film calibration using gradients centered at 1.6, 3, 3.5, and 7 Gy central axis (CAX), obtained through optimized gradient positioning, was showcased. The presented work demonstrates the potential for an improved film calibration process, with efficient material utilization and enhanced dosimetric accuracy for clinical applications. While the method was described for the use of a physical wedge, the methodology can be easily extended to the use of a more convenient dynamic wedge.

2.
Int J Mol Sci ; 24(18)2023 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-37762566

RESUMEN

Chloroplast movement rapidly ameliorates the effects of suboptimal light intensity by accumulating along the periclinal cell walls, as well as the effects of excess light by shifting to the anticlinal cell walls. These acclimation responses are triggered by phototropins located at the plasma membrane and chloroplast envelope. Here, we used a recently developed non-invasive system sensitive to very small changes in red light leaf transmittance to perform long-term continuous measurements of dark-light transitions. As a model system, we used variegated Pelargonium zonale leaves containing green sectors (GS) with fully developed chloroplasts and achlorophyllous, white sectors (WS) with undifferentiated plastids, and higher phototropin expression levels. We observed biphasic changes in the red-light transmittance and oscillations triggered by medium intensities of white light, described by a transient peak preceded by a constant decrease in transmittance level. A slight change in red-light transmittance was recorded even in WS. Furthermore, the chloroplast position at lower light intensities affected the rapid light curves, while high light intensity decreased saturated electron transport, maximum quantum efficiency of photosystem II, and increased non-photochemical quenching of chlorophyll fluorescence and epidermal flavonoids. Our results extend the knowledge of light-dependent chloroplast movements and thus contribute to a better understanding of their role in regulating photosynthesis under fluctuating light conditions.

3.
Z Med Phys ; 2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37393128

RESUMEN

Reliable calibration is one of the major challenges in using radiochromic films (RCF) for radiation dosimetry. In this study the feasibility of using dose gradients produced by a physical wedge (PW) for RCF calibration was investigated. The aim was to establish an efficient and reproducible method for calibrating RCF using a PW. Film strips were used to capture the wedge dose profile for five different exposures and the acquired scans were processed to generate corresponding net optical density wedge profiles. The proposed method was compared to the benchmark calibration, following the guidelines for precise calibration using uniform dose fields. The results of the benchmark comparison presented in this paper showed that using a single film strip for measuring wedge dose profile is sufficient for estimating a reliable calibration curve within the recorded dose range. Furthermore, the PW calibration can be extrapolated or extended by using multiple gradients for the optimal coverage of the desired calibration dose range. The method outlined in this paper can be readily replicated using the equipment and expertise commonly found in a radiotherapy center. Once the dose profile and central axis attenuation coefficient of the PW are determined, they can serve as a reference for a variety of calibrations using different types and batches of film. This investigation demonstrated that the calibration curves obtained with the presented PW calibration method are within the bounds of the measurement uncertainty evaluated for the conventional uniform dose field calibration method.

4.
Spectrochim Acta A Mol Biomol Spectrosc ; 81(1): 672-8, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21795103

RESUMEN

The first galvanoluminescence spectrum in the ultraviolet region obtained during anodization of high purity aluminum samples annealed at temperature above 525°C is presented. An intense broad peak with the maximum at about 31,900 cm(-1) is assigned to the transitions (some of them heretofore unobserved) between vibrational levels of the C(2)∏→X(2)Σ(+) spectral system of AlO, partly overlapped with the A(2)Σ(+)→X(2)∏ system of OH.


Asunto(s)
Óxido de Aluminio/química , Aluminio/química , Aluminio/metabolismo , Iones/metabolismo , Análisis Espectral , Impedancia Eléctrica , Electrodos , Iones/química , Luminiscencia , Microscopía Electrónica de Rastreo , Modelos Teóricos , Propiedades de Superficie , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA