Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Math Imaging Vis ; 60(9): 1427-1458, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30956394

RESUMEN

The enhancement and detection of elongated structures in noisy image data are relevant for many biomedical imaging applications. To handle complex crossing structures in 2D images, 2D orientation scores U : R 2 × S 1 → C were introduced, which already showed their use in a variety of applications. Here we extend this work to 3D orientation scores U : R 3 × S 2 → C . First, we construct the orientation score from a given dataset, which is achieved by an invertible coherent state type of transform. For this transformation we introduce 3D versions of the 2D cake wavelets, which are complex wavelets that can simultaneously detect oriented structures and oriented edges. Here we introduce two types of cake wavelets: the first uses a discrete Fourier transform, and the second is designed in the 3D generalized Zernike basis, allowing us to calculate analytical expressions for the spatial filters. Second, we propose a nonlinear diffusion flow on the 3D roto-translation group: crossing-preserving coherence-enhancing diffusion via orientation scores (CEDOS). Finally, we show two applications of the orientation score transformation. In the first application we apply our CEDOS algorithm to real medical image data. In the second one we develop a new tubularity measure using 3D orientation scores and apply the tubularity measure to both artificial and real medical data.

2.
J Math Imaging Vis ; 58(2): 239-264, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-32103857

RESUMEN

In order to detect salient lines in spherical images, we consider the problem of minimizing the functional ∫ 0 l C ( γ ( s ) ) ξ 2 + k g 2 ( s ) d s for a curve γ on a sphere with fixed boundary points and directions. The total length l is free, s denotes the spherical arclength, and k g denotes the geodesic curvature of  γ . Here the smooth external cost C ≥ δ > 0 is obtained from spherical data. We lift this problem to the sub-Riemannian (SR) problem in Lie group SO(3) and show that the spherical projection of certain SR geodesics provides a solution to our curve optimization problem. In fact, this holds only for the geodesics whose spherical projection does not exhibit a cusp. The problem is a spherical extension of a well-known contour perception model, where we extend the model by Boscain and Rossi to the general case ξ > 0 , C ≠ 1 . For C = 1 , we derive SR geodesics and evaluate the first cusp time. We show that these curves have a simpler expression when they are parameterized by spherical arclength rather than by sub-Riemannian arclength. For case C ≠ 1 (data-driven SR geodesics), we solve via a SR Fast Marching method. Finally, we show an experiment of vessel tracking in a spherical image of the retina and study the effect of including the spherical geometry in analysis of vessels curvature.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA