RESUMEN
Clostridium perfringens type D is the causative agent of enterotoxemia in sheep, goats, and cattle. Although in sheep and cattle, the disease is mainly characterized by neurological clinical signs and lesions, goats with type D enterotoxemia frequently have alterations of the alimentary system. Epsilon toxin (ETX) is the main virulence factor of C. perfringens type D, although the role of ETX in intestinal lesions in goats with type D enterotoxemia has not been fully characterized. We evaluated the contribution of ETX to C. perfringens type D enteric pathogenicity using an intraduodenal challenge model in young goats, with the virulent C. perfringens type D wild-type strain CN1020; its isogenic etx null mutant; an etx-complemented strain; and sterile, non-toxic culture medium. The intestinal tract of each animal was evaluated grossly, microscopically, and immunohistochemically for activated caspase-3. Both ETX-producing strains induced extensive enterocolitis characterized by severe mucosal necrosis, apoptosis, and diffuse suppurative infiltrates. No significant gross or microscopic lesions were observed in goats inoculated with the non-ETX-containing inocula. These results confirm that ETX is essential for the production of intestinal lesions in goats with type D disease. Also, our results suggest that the intestinal pathology of type D enterotoxemia in goats is, at least in part, associated with apoptosis.
RESUMEN
Enterotoxemia caused by Clostridium perfringens type D usually affects sheep and goats ≥ 2-wk-old. The main clinical signs and lesions of the disease are produced by the epsilon toxin (ETX) elaborated by this microorganism. However, ETX is produced in the form of a mostly inactive prototoxin that requires protease cleavage for activation. It has traditionally been believed that younger animals are not affected by type D enterotoxemia given the low trypsin activity in the intestinal content associated with the trypsin-inhibitory action of colostrum. Two Nigerian dwarf goat kids, 2- and 3-d-old, with a history of acute diarrhea followed by death, were submitted for postmortem examination and diagnostic workup. Autopsy and histopathology revealed mesocolonic edema, necrosuppurative colitis, and protein-rich pulmonary edema. Alpha toxin and ETX were detected in intestinal content, and C. perfringens type D was isolated from the colon of both animals. The isolates encoded the gene for lambda toxin, a protease that has been shown previously to activate ETX in vitro. Type D enterotoxemia has not been reported previously in neonatal kids, to our knowledge, and we suggest that lambda toxin activated the ETX.
Asunto(s)
Clostridium perfringens , Enfermedades de las Ovejas , Ovinos , Animales , Clostridium perfringens/fisiología , Enterotoxemia/diagnóstico , Enterotoxemia/patología , Cabras , Tripsina , Péptido HidrolasasRESUMEN
Type D enterotoxemia, caused by Clostridium perfringens epsilon toxin (ETX), is one of the most economically important clostridial diseases of sheep. Acute type D enterotoxemia is characterized by well-documented lesions in the nervous, cardiocirculatory, and pulmonary systems. However, discrepancies and confusion exist as to whether renal lesions are part of the spectrum of lesions of this condition, which is controversial considering that for many decades it has been colloquially referred to as "pulpy kidney disease." Here, the authors assess renal changes in an experimental model of acute type D enterotoxemia in sheep and evaluate the possible role of ETX in their genesis. Four groups of 6 sheep each were intraduodenally inoculated with either a wild-type virulent C. perfringens type D strain, an etx knockout mutant unable to produce ETX, the etx mutant strain complemented with the wild-type etx gene that regains the ETX toxin production, or sterile culture medium (control group). All sheep were autopsied less than 24 hours after inoculation; none of them developed gross lesions in the kidneys. Ten predefined histologic renal changes were scored in each sheep. The proportion of sheep with microscopic changes and their severity scores did not differ significantly between groups. Mild intratubular medullary hemorrhage was observed in only 2 of the 12 sheep inoculated with the wild-type or etx-complemented bacterial strains, but not in the 12 sheep of the other 2 groups. The authors conclude that no specific gross or histologic renal lesions are observed in sheep with experimental acute type D enterotoxemia.
Asunto(s)
Infecciones por Clostridium , Enfermedades de las Ovejas , Ovinos , Animales , Clostridium perfringens/genética , Enterotoxemia/microbiología , Infecciones por Clostridium/patología , Infecciones por Clostridium/veterinaria , Riñón/patología , Enfermedades de las Ovejas/patologíaRESUMEN
Enterotoxemia caused by Clostridium perfringens type D is one of the most prevalent clostridial diseases of sheep. The lesions of the acute form of this disease, particularly the cerebral lesions, are well characterized; however, detailed descriptions of the cardiac and pulmonary lesions are lacking. Here we describe cardiopulmonary lesions in experimental acute type D enterotoxemia in sheep and determine the role of epsilon toxin (ETX) in the development of these lesions. Four groups of 6 sheep were intraduodenally inoculated with either a wild-type C. perfringens type D strain; its etx knockout mutant, which is unable to produce ETX; the etx mutant complemented with the wild-type etx gene, which regains the ETX toxigenic ability; or sterile culture medium as a control. All sheep were subjected to postmortem examination within 24 hours of inoculation. Lesion scores were compared between groups for pulmonary edema; hydrothorax; ascites; hydropericardium; endocardial, myocardial and epicardial hemorrhages; microscopic lesions of acute myocardial degeneration and necrosis; and myocardial, endocardial, and epicardial edema, hemorrhage, and inflammation. Only sheep inoculated with the wild-type and complemented ETX-toxigenic bacterial strains developed cardiopulmonary lesions, which were present in varying degrees of severity and proportions. These lesions were not present in sheep inoculated with the etx mutant or in the negative control. We conclude that severe acute cardiopulmonary lesions in sheep with experimental enterotoxemia are associated with the capacity of the strains to produce ETX. These changes are likely contributors to the clinical signs and even death of affected animals.
Asunto(s)
Infecciones por Clostridium , Enfermedades de las Ovejas , Animales , Infecciones por Clostridium/veterinaria , Clostridium perfringens , Enterotoxemia , Corazón , Necrosis/veterinaria , OvinosRESUMEN
Between 2003 and 2017, at least 706 southern right whale (Eubalaena australis) calves died at the Península Valdés calving ground in Argentina. Pathogenic microbes are often suggested to be the cause of stranding events in cetaceans; however, to date there is no evidence supporting bacterial infections as a leading cause of right whale calf deaths in Argentina. We used high-throughput sequencing and culture methods to characterize the bacterial communities and to detect potential pathogens from the intestine of stranded calves. We analyzed small and large intestinal contents from 44 dead calves that stranded at Península Valdés from 2005 to 2010 and found 108 bacterial genera, most identified as Firmicutes or Bacteroidetes, and 9 genera that have been previously implicated in diseases of marine mammals. Only one operational taxonomic unit was present in all samples and identified as Clostridium perfringens type A. PCR results showed that all C. perfringens isolates (nâ¯=â¯38) were positive for alpha, 50% for beta 2 (nâ¯=â¯19) and 47% for enterotoxin (CPE) genes (nâ¯=â¯18). The latter is associated with food-poisoning and gastrointestinal diseases in humans and possibly other animals. The prevalence of the cpe gene found in the Valdés' calves is unusually high compared with other mammals. However, insufficient histologic evidence of gastrointestinal inflammation or necrosis (the latter possibly masked by autolysis) in the gut of stranded calves, and absence of enterotoxin detection precludes conclusions about the role of C. perfringens in calf deaths. Further work is required to determine whether C. perfringens or other pathogens detected in this study are causative agents of calf deaths at Península Valdés.