Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Ecol Lett ; 27(5): e14415, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38712683

RESUMEN

The breakdown of plant material fuels soil functioning and biodiversity. Currently, process understanding of global decomposition patterns and the drivers of such patterns are hampered by the lack of coherent large-scale datasets. We buried 36,000 individual litterbags (tea bags) worldwide and found an overall negative correlation between initial mass-loss rates and stabilization factors of plant-derived carbon, using the Tea Bag Index (TBI). The stabilization factor quantifies the degree to which easy-to-degrade components accumulate during early-stage decomposition (e.g. by environmental limitations). However, agriculture and an interaction between moisture and temperature led to a decoupling between initial mass-loss rates and stabilization, notably in colder locations. Using TBI improved mass-loss estimates of natural litter compared to models that ignored stabilization. Ignoring the transformation of dead plant material to more recalcitrant substances during early-stage decomposition, and the environmental control of this transformation, could overestimate carbon losses during early decomposition in carbon cycle models.


Asunto(s)
Hojas de la Planta , Ciclo del Carbono , Carbono/metabolismo
2.
Nat Commun ; 15(1): 641, 2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38245523

RESUMEN

In recent years, large-scale tree mortality events linked to global change have occurred around the world. Current forest monitoring methods are crucial for identifying mortality hotspots, but systematic assessments of isolated or scattered dead trees over large areas are needed to reduce uncertainty on the actual extent of tree mortality. Here, we mapped individual dead trees in California using sub-meter resolution aerial photographs from 2020 and deep learning-based dead tree detection. We identified 91.4 million dead trees over 27.8 million hectares of vegetated areas (16.7-24.7% underestimation bias when compared to field data). Among these, a total of 19.5 million dead trees appeared isolated, and 60% of all dead trees occurred in small groups ( ≤ 3 dead trees within a 30 × 30 m grid), which is largely undetected by other state-level monitoring methods. The widespread mortality of individual trees impacts the carbon budget and sequestration capacity of California forests and can be considered a threat to forest health and a fuel source for future wildfires.


Asunto(s)
Árboles , Incendios Forestales , Bosques , California , Carbono
3.
Proc Natl Acad Sci U S A ; 121(4): e2309881120, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38190514

RESUMEN

Climate change is increasing the frequency and severity of short-term (~1 y) drought events-the most common duration of drought-globally. Yet the impact of this intensification of drought on ecosystem functioning remains poorly resolved. This is due in part to the widely disparate approaches ecologists have employed to study drought, variation in the severity and duration of drought studied, and differences among ecosystems in vegetation, edaphic and climatic attributes that can mediate drought impacts. To overcome these problems and better identify the factors that modulate drought responses, we used a coordinated distributed experiment to quantify the impact of short-term drought on grassland and shrubland ecosystems. With a standardized approach, we imposed ~a single year of drought at 100 sites on six continents. Here we show that loss of a foundational ecosystem function-aboveground net primary production (ANPP)-was 60% greater at sites that experienced statistically extreme drought (1-in-100-y event) vs. those sites where drought was nominal (historically more common) in magnitude (35% vs. 21%, respectively). This reduction in a key carbon cycle process with a single year of extreme drought greatly exceeds previously reported losses for grasslands and shrublands. Our global experiment also revealed high variability in drought response but that relative reductions in ANPP were greater in drier ecosystems and those with fewer plant species. Overall, our results demonstrate with unprecedented rigor that the global impacts of projected increases in drought severity have been significantly underestimated and that drier and less diverse sites are likely to be most vulnerable to extreme drought.


Asunto(s)
Sequías , Ecosistema , Pradera , Ciclo del Carbono , Cambio Climático , Proteínas Tirosina Quinasas Receptoras
5.
Nat Ecol Evol ; 6(5): 540-545, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35273367

RESUMEN

Researchers use both experiments and observations to study the impacts of climate change on ecosystems, but results from these contrasting approaches have not been systematically compared for droughts. Using a meta-analysis and accounting for potential confounding factors, we demonstrate that aboveground biomass responded only about half as much to experimentally imposed drought events as to natural droughts. Our findings indicate that experimental results may underestimate climate change impacts and highlight the need to integrate results across approaches.


Asunto(s)
Sequías , Ecosistema , Biomasa , Cambio Climático
7.
Nat Ecol Evol ; 3(9): 1309-1320, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31427733

RESUMEN

Direct quantification of terrestrial biosphere responses to global change is crucial for projections of future climate change in Earth system models. Here, we synthesized ecosystem carbon-cycling data from 1,119 experiments performed over the past four decades concerning changes in temperature, precipitation, CO2 and nitrogen across major terrestrial vegetation types of the world. Most experiments manipulated single rather than multiple global change drivers in temperate ecosystems of the USA, Europe and China. The magnitudes of warming and elevated CO2 treatments were consistent with the ranges of future projections, whereas those of precipitation changes and nitrogen inputs often exceeded the projected ranges. Increases in global change drivers consistently accelerated, but decreased precipitation slowed down carbon-cycle processes. Nonlinear (including synergistic and antagonistic) effects among global change drivers were rare. Belowground carbon allocation responded negatively to increased precipitation and nitrogen addition and positively to decreased precipitation and elevated CO2. The sensitivities of carbon variables to multiple global change drivers depended on the background climate and ecosystem condition, suggesting that Earth system models should be evaluated using site-specific conditions for best uses of this large dataset. Together, this synthesis underscores an urgent need to explore the interactions among multiple global change drivers in underrepresented regions such as semi-arid ecosystems, forests in the tropics and subtropics, and Arctic tundra when forecasting future terrestrial carbon-climate feedback.


Asunto(s)
Ciclo del Carbono , Ecosistema , Carbono , China , Europa (Continente)
8.
Glob Chang Biol ; 25(8): 2727-2738, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31206913

RESUMEN

Soil fauna play a fundamental role on key ecosystem functions like organic matter decomposition, although how local assemblages are responding to climate change and whether these changes may have consequences to ecosystem functioning is less clear. Previous studies have revealed that a continued environmental stress may result in poorer communities by filtering out the most sensitive species. However, these experiments have rarely been applied to climate change factors combining multiyear and multisite standardized field treatments across climatically contrasting regions, which has limited drawing general conclusions. Moreover, other facets of biodiversity, such as functional and phylogenetic diversity, potentially more closely linked to ecosystem functioning, have been largely neglected. Here, we report that the abundance, species richness, phylogenetic diversity, and functional richness of springtails (Subclass Collembola), a major group of fungivores and detritivores, decreased within 4 years of experimental drought across six European shrublands. The loss of phylogenetic and functional richness was higher than expected by the loss of species richness, leading to communities of phylogenetically similar species sharing evolutionary conserved traits. Additionally, despite the great climatic differences among study sites, we found that taxonomic, phylogenetic, and functional richness of springtail communities alone were able to explain up to 30% of the variation in annual decomposition rates. Altogether, our results suggest that the forecasted reductions in precipitation associated with climate change may erode springtail communities and likely other drought-sensitive soil invertebrates, thereby retarding litter decomposition and nutrient cycling in ecosystems.


Asunto(s)
Sequías , Ecosistema , Animales , Biodiversidad , Europa (Continente) , Filogenia
9.
Glob Chang Biol ; 25(9): 2970-2977, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31095816

RESUMEN

Elevated atmospheric CO2 concentration and climate change may substantially alter soil carbon (C) dynamics, which in turn may impact future climate through feedback cycles. However, only very few field experiments worldwide have combined elevated CO2 (eCO2 ) with both warming and changes in precipitation in order to study the potential combined effects of changes in these fundamental drivers of C cycling in ecosystems. We exposed a temperate heath/grassland to eCO2 , warming, and drought, in all combinations for 8 years. At the end of the study, soil C stocks were on average 0.927 kg C/m2 higher across all treatment combinations with eCO2 compared to ambient CO2 treatments (equal to an increase of 0.120 ± 0.043 kg C m-2  year-1 ), and showed no sign of slowed accumulation over time. However, if observed pretreatment differences in soil C are taken into account, the annual rate of increase caused by eCO2 may be as high as 0.177 ± 0.070 kg C m-2  year-1 . Furthermore, the response to eCO2 was not affected by simultaneous exposure to warming and drought. The robust increase in soil C under eCO2 observed here, even when combined with other climate change factors, suggests that there is continued and strong potential for enhanced soil carbon sequestration in some ecosystems to mitigate increasing atmospheric CO2 concentrations under future climate conditions. The feedback between land C and climate remains one of the largest sources of uncertainty in future climate projections, yet experimental data under simulated future climate, and especially including combined changes, are still scarce. Globally coordinated and distributed experiments with long-term measurements of changes in soil C in response to the three major climate change-related global changes, eCO2 , warming, and changes in precipitation patterns, are, therefore, urgently needed.


Asunto(s)
Carbono , Suelo , Dióxido de Carbono , Cambio Climático , Sequías , Ecosistema
10.
Nat Plants ; 5(2): 167-173, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30737508

RESUMEN

Rising atmospheric carbon dioxide concentration should stimulate biomass production directly via biochemical stimulation of carbon assimilation, and indirectly via water savings caused by increased plant water-use efficiency. Because of these water savings, the CO2 fertilization effect (CFE) should be stronger at drier sites, yet large differences among experiments in grassland biomass response to elevated CO2 appear to be unrelated to annual precipitation, preventing useful generalizations. Here, we show that, as predicted, the impact of elevated CO2 on biomass production in 19 globally distributed temperate grassland experiments reduces as mean precipitation in seasons other than spring increases, but that it rises unexpectedly as mean spring precipitation increases. Moreover, because sites with high spring precipitation also tend to have high precipitation at other times, these effects of spring and non-spring precipitation on the CO2 response offset each other, constraining the response of ecosystem productivity to rising CO2. This explains why previous analyses were unable to discern a reliable trend between site dryness and the CFE. Thus, the CFE in temperate grasslands worldwide will be constrained by their natural rainfall seasonality such that the stimulation of biomass by rising CO2 could be substantially less than anticipated.


Asunto(s)
Dióxido de Carbono , Pradera , Biomasa , Clima , Estaciones del Año
11.
Sci Total Environ ; 628-629: 1369-1394, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30045558

RESUMEN

Through litter decomposition enormous amounts of carbon is emitted to the atmosphere. Numerous large-scale decomposition experiments have been conducted focusing on this fundamental soil process in order to understand the controls on the terrestrial carbon transfer to the atmosphere. However, previous studies were mostly based on site-specific litter and methodologies, adding major uncertainty to syntheses, comparisons and meta-analyses across different experiments and sites. In the TeaComposition initiative, the potential litter decomposition is investigated by using standardized substrates (Rooibos and Green tea) for comparison of litter mass loss at 336 sites (ranging from -9 to +26 °C MAT and from 60 to 3113 mm MAP) across different ecosystems. In this study we tested the effect of climate (temperature and moisture), litter type and land-use on early stage decomposition (3 months) across nine biomes. We show that litter quality was the predominant controlling factor in early stage litter decomposition, which explained about 65% of the variability in litter decomposition at a global scale. The effect of climate, on the other hand, was not litter specific and explained <0.5% of the variation for Green tea and 5% for Rooibos tea, and was of significance only under unfavorable decomposition conditions (i.e. xeric versus mesic environments). When the data were aggregated at the biome scale, climate played a significant role on decomposition of both litter types (explaining 64% of the variation for Green tea and 72% for Rooibos tea). No significant effect of land-use on early stage litter decomposition was noted within the temperate biome. Our results indicate that multiple drivers are affecting early stage litter mass loss with litter quality being dominant. In order to be able to quantify the relative importance of the different drivers over time, long-term studies combined with experimental trials are needed.

12.
Sci Rep ; 7: 43952, 2017 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-28256623

RESUMEN

Above- and belowground carbon (C) stores of terrestrial ecosystems are vulnerable to environmental change. Ecosystem C balances in response to environmental changes have been quantified at individual sites, but the magnitudes and directions of these responses along environmental gradients remain uncertain. Here we show the responses of ecosystem C to 8-12 years of experimental drought and night-time warming across an aridity gradient spanning seven European shrublands using indices of C assimilation (aboveground net primary production: aNPP) and soil C efflux (soil respiration: Rs). The changes of aNPP and Rs in response to drought indicated that wet systems had an overall risk of increased loss of C but drier systems did not. Warming had no consistent effect on aNPP across the climate gradient, but suppressed Rs more at the drier sites. Our findings suggest that above- and belowground C fluxes can decouple, and provide no evidence of acclimation to environmental change at a decadal timescale. aNPP and Rs especially differed in their sensitivity to drought and warming, with belowground processes being more sensitive to environmental change.

13.
Sci Rep ; 7: 41388, 2017 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-28120893

RESUMEN

In a dry heathland ecosystem we manipulated temperature (warming), precipitation (drought) and atmospheric concentration of CO2 in a full-factorial experiment in order to investigate changes in below-ground biodiversity as a result of future climate change. We investigated the responses in community diversity of nematodes, enchytraeids, collembolans and oribatid mites at two and eight years of manipulations. We used a structural equation modelling (SEM) approach analyzing the three manipulations, soil moisture and temperature, and seven soil biological and chemical variables. The analysis revealed a persistent and positive effect of elevated CO2 on litter C:N ratio. After two years of treatment, the fungi to bacteria ratio was increased by warming, and the diversities within oribatid mites, collembolans and nematode groups were all affected by elevated CO2 mediated through increased litter C:N ratio. After eight years of treatment, however, the CO2-increased litter C:N ratio did not influence the diversity in any of the four fauna groups. The number of significant correlations between treatments, food source quality, and soil biota diversities was reduced from six to three after two and eight years, respectively. These results suggest a remarkable resilience within the soil biota against global climate change treatments in the long term.


Asunto(s)
Biota , Cambio Climático , Suelo , Animales , Dióxido de Carbono/análisis , Sequías , Modelos Teóricos , Nematodos/fisiología , Temperatura , Factores de Tiempo
14.
Glob Chang Biol ; 23(5): 1774-1782, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-27633752

RESUMEN

Intensification of the global hydrological cycle, ranging from larger individual precipitation events to more extreme multiyear droughts, has the potential to cause widespread alterations in ecosystem structure and function. With evidence that the incidence of extreme precipitation years (defined statistically from historical precipitation records) is increasing, there is a clear need to identify ecosystems that are most vulnerable to these changes and understand why some ecosystems are more sensitive to extremes than others. To date, opportunistic studies of naturally occurring extreme precipitation years, combined with results from a relatively small number of experiments, have provided limited mechanistic understanding of differences in ecosystem sensitivity, suggesting that new approaches are needed. Coordinated distributed experiments (CDEs) arrayed across multiple ecosystem types and focused on water can enhance our understanding of differential ecosystem sensitivity to precipitation extremes, but there are many design challenges to overcome (e.g., cost, comparability, standardization). Here, we evaluate contemporary experimental approaches for manipulating precipitation under field conditions to inform the design of 'Drought-Net', a relatively low-cost CDE that simulates extreme precipitation years. A common method for imposing both dry and wet years is to alter each ambient precipitation event. We endorse this approach for imposing extreme precipitation years because it simultaneously alters other precipitation characteristics (i.e., event size) consistent with natural precipitation patterns. However, we do not advocate applying identical treatment levels at all sites - a common approach to standardization in CDEs. This is because precipitation variability varies >fivefold globally resulting in a wide range of ecosystem-specific thresholds for defining extreme precipitation years. For CDEs focused on precipitation extremes, treatments should be based on each site's past climatic characteristics. This approach, though not often used by ecologists, allows ecological responses to be directly compared across disparate ecosystems and climates, facilitating process-level understanding of ecosystem sensitivity to precipitation extremes.


Asunto(s)
Sequías , Ecosistema , Ciclo Hidrológico , Ecología , Lluvia
15.
Glob Chang Biol ; 22(7): 2370-9, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27109012

RESUMEN

Whether species can respond evolutionarily to current climate change is crucial for the persistence of many species. Yet, very few studies have examined genetic responses to climate change in manipulated experiments carried out in natural field conditions. We examined the evolutionary response to climate change in a common annelid worm using a controlled replicated experiment where climatic conditions were manipulated in a natural setting. Analyzing the transcribed genome of 15 local populations, we found that about 12% of the genetic polymorphisms exhibit differences in allele frequencies associated to changes in soil temperature and soil moisture. This shows an evolutionary response to realistic climate change happening over short-time scale, and calls for incorporating evolution into models predicting future response of species to climate change. It also shows that designed climate change experiments coupled with genome sequencing offer great potential to test for the occurrence (or lack) of an evolutionary response.


Asunto(s)
Evolución Biológica , Cambio Climático , Invertebrados/genética , Suelo , Animales , Clima , Frecuencia de los Genes , Polimorfismo Genético , Temperatura
16.
Glob Chang Biol ; 22(7): 2570-81, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26946322

RESUMEN

Well-defined productivity-precipitation relationships of ecosystems are needed as benchmarks for the validation of land models used for future projections. The productivity-precipitation relationship may be studied in two ways: the spatial approach relates differences in productivity to those in precipitation among sites along a precipitation gradient (the spatial fit, with a steeper slope); the temporal approach relates interannual productivity changes to variation in precipitation within sites (the temporal fits, with flatter slopes). Precipitation-reduction experiments in natural ecosystems represent a complement to the fits, because they can reduce precipitation below the natural range and are thus well suited to study potential effects of climate drying. Here, we analyse the effects of dry treatments in eleven multiyear precipitation-manipulation experiments, focusing on changes in the temporal fit. We expected that structural changes in the dry treatments would occur in some experiments, thereby reducing the intercept of the temporal fit and displacing the productivity-precipitation relationship downward the spatial fit. The majority of experiments (72%) showed that dry treatments did not alter the temporal fit. This implies that current temporal fits are to be preferred over the spatial fit to benchmark land-model projections of productivity under future climate within the precipitation ranges covered by the experiments. Moreover, in two experiments, the intercept of the temporal fit unexpectedly increased due to mechanisms that reduced either water loss or nutrient loss. The expected decrease of the intercept was observed in only one experiment, and only when distinguishing between the late and the early phases of the experiment. This implies that we currently do not know at which precipitation-reduction level or at which experimental duration structural changes will start to alter ecosystem productivity. Our study highlights the need for experiments with multiple, including more extreme, dry treatments, to identify the precipitation boundaries within which the current temporal fits remain valid.


Asunto(s)
Clima , Ecología/métodos , Ecosistema , Lluvia , Agua
17.
Nat Commun ; 6: 6682, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25801187

RESUMEN

Human domination of the biosphere includes changes to disturbance regimes, which push many ecosystems towards early-successional states. Ecological theory predicts that early-successional ecosystems are more sensitive to perturbations than mature systems, but little evidence supports this relationship for the perturbation of climate change. Here we show that vegetation (abundance, species richness and species composition) across seven European shrublands is quite resistant to moderate experimental warming and drought, and responsiveness is associated with the dynamic state of the ecosystem, with recently disturbed sites responding to treatments. Furthermore, most of these responses are not rapid (2-5 years) but emerge over a longer term (7-14 years). These results suggest that successional state influences the sensitivity of ecosystems to climate change, and that ecosystems recovering from disturbances may be sensitive to even modest climatic changes. A research bias towards undisturbed ecosystems might thus lead to an underestimation of the impacts of climate change.


Asunto(s)
Cambio Climático , Sequías , Ecosistema , Plantas , Biodiversidad , Europa (Continente) , Calentamiento Global
18.
Ecol Lett ; 17(1): 125-e1, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24341985

RESUMEN

Experimental evidence for impacts of increased climatic variability and extremes on ecosystems is urgently needed. The constraint in our knowledge, however, is not caused by the uncertainty in the applied climate scenarios. We need mechanistic understanding from experiments challenging ecological thresholds coupled with ecosystem models to allow for meaningful up-scaling.


Asunto(s)
Cambio Climático , Ecosistema , Modelos Teóricos , Proyectos de Investigación/tendencias
19.
Ecol Evol ; 3(6): 1449-60, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789058

RESUMEN

The impact of climate change on herbivorous insects can have far-reaching consequences for ecosystem processes. However, experiments investigating the combined effects of multiple climate change drivers on herbivorous insects are scarce. We independently manipulated three climate change drivers (CO2, warming, drought) in a Danish heathland ecosystem. The experiment was established in 2005 as a full factorial split-plot with 6 blocks × 2 levels of CO2 × 2 levels of warming × 2 levels of drought = 48 plots. In 2008, we exposed 432 larvae (n = 9 per plot) of the heather beetle (Lochmaea suturalis Thomson), an important herbivore on heather, to ambient versus elevated drought, temperature, and CO2 (plus all combinations) for 5 weeks. Larval weight and survival were highest under ambient conditions and decreased significantly with the number of climate change drivers. Weight was lowest under the drought treatment, and there was a three-way interaction between time, CO2, and drought. Survival was lowest when drought, warming, and elevated CO2 were combined. Effects of climate change drivers depended on other co-acting factors and were mediated by changes in plant secondary compounds, nitrogen, and water content. Overall, drought was the most important factor for this insect herbivore. Our study shows that weight and survival of insect herbivores may decline under future climate. The complexity of insect herbivore responses increases with the number of combined climate change drivers.

20.
Ecol Lett ; 15(8): 899-911, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22553898

RESUMEN

Climatic changes, including altered precipitation regimes, will affect key ecosystem processes, such as plant productivity and biodiversity for many terrestrial ecosystems. Past and ongoing precipitation experiments have been conducted to quantify these potential changes. An analysis of these experiments indicates that they have provided important information on how water regulates ecosystem processes. However, they do not adequately represent global biomes nor forecasted precipitation scenarios and their potential contribution to advance our understanding of ecosystem responses to precipitation changes is therefore limited, as is their potential value for the development and testing of ecosystem models. This highlights the need for new precipitation experiments in biomes and ambient climatic conditions hitherto poorly studied applying relevant complex scenarios including changes in precipitation frequency and amplitude, seasonality, extremity and interactions with other global change drivers. A systematic and holistic approach to investigate how soil and plant community characteristics change with altered precipitation regimes and the consequent effects on ecosystem processes and functioning within these experiments will greatly increase their value to the climate change and ecosystem research communities. Experiments should specifically test how changes in precipitation leading to exceedance of biological thresholds affect ecosystem resilience and acclimation.


Asunto(s)
Cambio Climático , Ecosistema , Desarrollo de la Planta , Lluvia , Adaptación Biológica , Biodiversidad , Biomasa , Predicción , Investigación/tendencias , Suelo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA