Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Food Microbiol ; 354: 109326, 2021 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-34247024

RESUMEN

Serratia sp. cause food losses and waste due to spoilage; it is noteworthy that they represent a dominant population in seafood. The main spoilage associated species comprise S. liquefaciens, S. grimesii, S. proteamaculans and S. quinivorans, also known as S. liquefaciens-like strains. These species are difficult to discriminate since classical 16S rRNA gene-based sequences do not possess sufficient resolution. In this study, a phylogeny based on the short-length luxS gene was able to speciate 47 Serratia isolates from seafood, with S. proteamaculans being the main species from fresh salmon and tuna, cold-smoked salmon, and cooked shrimp while S. liquefaciens was only found in cold-smoked salmon. The genome of the first S. proteamaculans strain isolated from the seafood matrix (CD3406 strain) was sequenced. Pangenome analyses of S. proteamaculans and S. liquefaciens indicated high adaptation potential. Biosynthetic pathways involved in antimicrobial compounds production and in the main seafood spoilage compounds were also identified. The genetic equipment highlighted in this study contributed to gain further insights into the predominance of Serratia in seafood products and their capacity to spoil.


Asunto(s)
Microbiología de Alimentos , Variación Genética , Genoma Bacteriano , Alimentos Marinos , Serratia liquefaciens , Serratia , Genoma Bacteriano/genética , ARN Ribosómico 16S/genética , Alimentos Marinos/microbiología , Serratia/genética , Serratia liquefaciens/genética
2.
Microorganisms ; 8(7)2020 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-32708353

RESUMEN

Carnobacterium maltaromaticum and Carnobacterium divergens, isolated from food products, are lactic acid bacteria known to produce active and efficient bacteriocins. Other species, particularly those originating from marine sources, are less studied. The aim of the study is to select promising strains with antimicrobial potential by combining genomic and phenotypic approaches on large datasets comprising 12 Carnobacterium species. The biosynthetic gene cluster (BGCs) diversity of 39 publicly available Carnobacterium spp. genomes revealed 67 BGCs, distributed according to the species and ecological niches. From zero to six BGCs were predicted per strain and classified into four classes: terpene, NRPS (non-ribosomal peptide synthetase), NRPS-PKS (hybrid non-ribosomal peptide synthetase-polyketide synthase), RiPP (ribosomally synthesized and post-translationally modified peptide). In parallel, the antimicrobial activity of 260 strains from seafood products was evaluated. Among the 60% of active strains, three genomes were sequenced and submitted to a dereplication process. C. inhibens MIP2551 produced a high amountof H2O2, probably thanks to the presence of four oxidase-encoding genes. C. maltaromaticum EBP3019 and SF668 strains were highly efficient against Listeria monocytogenes. A new extracellular 16 kDa unmodified bacteriocin in the EBP3019 strain and five different bacteriocins in SF668 were highlighted. In this study, the overview of antimicrobial BGC and inhibitory activities of Carnobacterium spp. allowed the prediction of potential innovative natural products that could be relevant for biotechnological applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA