Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Eur J Neurosci ; 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39257366

RESUMEN

There are many different kinds of models, and they play many different roles in the scientific endeavour. Neuroscience, and biology more generally, has understandably tended to emphasise empirical models that are grounded in data and make specific, experimentally testable predictions. Meanwhile, strongly idealised or 'toy' models have played a central role in the theoretical development of other sciences such as physics. In this paper, we examine the nature of toy models and their prospects in neuroscience.

2.
Top Cogn Sci ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37531569

RESUMEN

This essay examines the relevance of dynamical ideas for cognitive science. On its own, the mere mathematical idea of a dynamical system is too weak to serve as a scientific theory of anything, and dynamical approaches within cognitive science are too rich and varied to be subsumed under a single "dynamical hypothesis." Instead, after first attempting to dissect the different notions of "dynamics" and "cognition" at play, a more specific theoretical framework for cognitive science broadly construed is sketched. This framework draws upon not only dynamical ideas, but also such contemporaneous perspectives as situatedness, embodiment, ecological psychology, enaction, neuroethology/neuroscience, artificial life, and biogenic approaches. The paper ends with some methodological suggestions for pursuing this theoretical framework.

3.
Biosystems ; 223: 104823, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36574923

RESUMEN

Enaction is an increasingly influential approach to cognition that grew out of Maturana and Varela's earlier work on autopoiesis and the biology of cognition. As with any relatively new scientific discipline, the enactive approach would benefit greatly from a careful analysis of its theoretical foundations. Here we initiate such an analysis for one of the core concepts of enaction, precariousness. Specifically, we consider three types of fragility: systemic, processual and thermodynamic. Using a glider in the Game of Life as a toy model, we illustrate each of these fragilities and examine the relationships between them. We also argue that each type of fragility is characterized by which aspects of a system are hardwired into its definition from the outset and which aspects are emergent and hence vulnerable to disintegration without ongoing maintenance.


Asunto(s)
Vida , Cognición
4.
Biol Cybern ; 116(4): 501-515, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35723721

RESUMEN

If we are ever to move beyond the study of isolated special cases in theoretical neuroscience, we need to develop more general theories of neural circuits over a given neural model. The present paper considers this challenge in the context of continuous-time recurrent neural networks (CTRNNs), a simple but dynamically universal model that has been widely utilized in both computational neuroscience and neural networks. Here, we extend previous work on the parameter space structure of codimension-1 local bifurcations in CTRNNs to include codimension-2 local bifurcation manifolds. Specifically, we derive the necessary conditions for all generic local codimension-2 bifurcations for general CTRNNs, specialize these conditions to circuits containing from one to four neurons, illustrate in full detail the application of these conditions to example circuits, derive closed-form expressions for these bifurcation manifolds where possible, and demonstrate how this analysis allows us to find and trace several global codimension-1 bifurcation manifolds that originate from the codimension-2 bifurcations.


Asunto(s)
Redes Neurales de la Computación , Neurociencias , Neuronas/fisiología , Factores de Tiempo
5.
Front Comput Neurosci ; 15: 572339, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679357

RESUMEN

Multiple mechanisms contribute to the generation, propagation, and coordination of the rhythmic patterns necessary for locomotion in Caenorhabditis elegans. Current experiments have focused on two possibilities: pacemaker neurons and stretch-receptor feedback. Here, we focus on whether it is possible that a chain of multiple network rhythmic pattern generators in the ventral nerve cord also contribute to locomotion. We use a simulation model to search for parameters of the anatomically constrained ventral nerve cord circuit that, when embodied and situated, can drive forward locomotion on agar, in the absence of pacemaker neurons or stretch-receptor feedback. Systematic exploration of the space of possible solutions reveals that there are multiple configurations that result in locomotion that is consistent with certain aspects of the kinematics of worm locomotion on agar. Analysis of the best solutions reveals that gap junctions between different classes of motorneurons in the ventral nerve cord can play key roles in coordinating the multiple rhythmic pattern generators.

6.
Exp Brain Res ; 239(1): 217-235, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33135131

RESUMEN

This study investigated the optical information and control strategies used in visually guided braking. In such tasks, drivers exhibit two different braking behaviors: impulsive braking and continuously regulated braking. We designed two experiments involving a simulated braking task to investigate these two behaviors. Participants viewed computer displays simulating an approach along a linear path over a textured ground surface toward a set of road signs. The task was to use a joystick as a brake to stop as close as possible to the road signs. Our results showed that participants relied on a weak constant-[Formula: see text] strategy (Bingham 1995) when regulating the brake impulsively. They used discrete [Formula: see text] values as critical values and they regulated the brake so as not to let [Formula: see text] fall below these values. Our results also showed that proportional rate control (Anderson and Bingham 2010, 2011) is used in continuously regulated braking. Participants initiated braking at a certain proportional rate value and controlled braking so as to maintain that value constant during the approach. Proportional rate control is robust because the value can fluctuate within a range to yield good performance. We argue that proportional rate control unifies the information-based approach and affordance-based approach to visually guided braking.


Asunto(s)
Conducción de Automóvil , Desaceleración , Humanos
7.
Artif Life ; 26(1): 5-22, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32027527

RESUMEN

Using a glider in the Game of Life cellular automaton as a toy model of minimal persistent individuals, this article explores how questions regarding the origin of life might be approached from the perspective of autopoiesis. Specifically, I examine how the density of gliders evolves over time from random initial conditions and then develop a statistical mechanics of gliders that explains this time evolution in terms of the processes of glider creation, persistence, and destruction that underlie it.


Asunto(s)
Modelos Biológicos , Origen de la Vida
8.
Netw Neurosci ; 2(3): 323-343, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30294702

RESUMEN

C. elegans locomotes in an undulatory fashion, generating thrust by propagating dorsoventral bends along its body. Although central pattern generators (CPGs) are typically involved in animal locomotion, their presence in C. elegans has been questioned, mainly because there has been no evident circuit that supports intrinsic network oscillations. With a fully reconstructed connectome, the question of whether it is possible to have a CPG in the ventral nerve cord (VNC) of C. elegans can be answered through computational models. We modeled a repeating neural unit based on segmentation analysis of the connectome. We then used an evolutionary algorithm to determine the unknown physiological parameters of each neuron so as to match the features of the neural traces of the worm during forward and backward locomotion. We performed 1,000 evolutionary runs and consistently found configurations of the neural circuit that produced oscillations matching the main characteristic observed in experimental recordings. In addition to providing an existence proof for the possibility of a CPG in the VNC, we suggest a series of testable hypotheses about its operation. More generally, we show the feasibility and fruitfulness of a methodology to study behavior based on a connectome, in the absence of complete neurophysiological details.

9.
Artículo en Inglés | MEDLINE | ID: mdl-30201838

RESUMEN

With 302 neurons and a near-complete reconstruction of the neural and muscle anatomy at the cellular level, Caenorhabditis elegans is an ideal candidate organism to study the neuromechanical basis of behaviour. Yet despite the breadth of knowledge about the neurobiology, anatomy and physics of C. elegans, there are still a number of unanswered questions about one of its most basic and fundamental behaviours: forward locomotion. How the rhythmic pattern is generated and propagated along the body is not yet well understood. We report on the development and analysis of a model of forward locomotion that integrates the neuroanatomy, neurophysiology and body mechanics of the worm. Our model is motivated by experimental analysis of the structure of the ventral cord circuitry and the effect of local body curvature on nearby motoneurons. We developed a neuroanatomically grounded model of the head motoneuron circuit and the ventral nerve cord circuit. We integrated the neural model with an existing biomechanical model of the worm's body, with updated musculature and stretch receptors. Unknown parameters were evolved using an evolutionary algorithm to match the speed of the worm on agar. We performed 100 evolutionary runs and consistently found electrophysiological configurations that reproduced realistic control of forward movement. The ensemble of successful solutions reproduced key experimental observations that they were not designed to fit, including the wavelength and frequency of the propagating wave. Analysis of the ensemble revealed that head motoneurons SMD and RMD are sufficient to drive dorsoventral undulations in the head and neck and that short-range posteriorly directed proprioceptive feedback is sufficient to propagate the wave along the rest of the body.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.


Asunto(s)
Caenorhabditis elegans/fisiología , Modelos Neurológicos , Animales , Retroalimentación Sensorial , Locomoción/fisiología , Neuronas Motoras/fisiología
10.
Chaos ; 27(11): 111104, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29195316

RESUMEN

Computing properties of the set of precursors of a given configuration is a common problem underlying many important questions about cellular automata. Unfortunately, such computations quickly become intractable in dimension greater than one. This paper presents an algorithm-incremental aggregation-that can compute aggregate properties of the set of precursors exponentially faster than naïve approaches. The incremental aggregation algorithm is demonstrated on two problems from the two-dimensional binary Game of Life cellular automaton: precursor count distributions and higher-order mean field theory coefficients. In both cases, incremental aggregation allows us to obtain new results that were previously beyond reach.

11.
Artif Life ; 22(4): 499-517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27824498

RESUMEN

Emergent individuals are often characterized with respect to their viability: their ability to maintain themselves and persist in variable environments. As such individuals interact with an environment, they undergo sequences of structural changes that correspond to their ontogenies. Ultimately, individuals that adapt to their environment, and increase their chances of survival, persist. This article provides an initial step towards a more formal treatment of these concepts. A network of possible ontogenies is uncovered by subjecting a model protocell to sequential perturbations and mapping the resulting structural configurations. The analysis of this network reveals trends in how the protocell can move between configurations, how its morphology changes, and how the role of the environment varies throughout. Viability is defined as expected life span given an initial configuration. This leads to two notions of adaptivity: a local adaptivity that addresses how viability changes in plastic transitions, and a global adaptivity that looks at longer-term tendencies for increased viability. To demonstrate how different protocell-environment pairings produce different patterns of ontogenic change, we generate and analyze a second ontogenic network for the same protocell in a different environment. Finally, the mechanisms of a minimal adaptive transition are analyzed, and it is shown that these rely on distributed spatial processes rather than an explicit regulatory mechanism. The combination of this model and analytical techniques provides a foundation for studying the emergence of viability, ontogeny, and adaptivity in more biologically realistic systems.


Asunto(s)
Células Artificiales , Modelos Biológicos , Evolución Biológica , Simulación por Computador
12.
Curr Opin Neurobiol ; 40: 23-30, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27336738

RESUMEN

Brain, body and environment are in continuous dynamical interaction, and it is becoming increasingly clear that an animal's behavior must be understood as a product not only of its nervous system, but also of the ongoing feedback of this neural activity through the biomechanics of its body and the ecology of its environment. Modeling has an essential integrative role to play in such an understanding. But successful whole-animal modeling requires an animal for which detailed behavioral, biomechanical and neural information is available and a modeling methodology which can gracefully cope with the constantly changing balance of known and unknown biological constraints. Here we review recent progress on both optogenetic techniques for imaging and manipulating neural activity and neuromechanical modeling in the nematode worm Caenorhabditis elegans. This work demonstrates both the feasibility and challenges of whole-animal modeling.


Asunto(s)
Caenorhabditis elegans/fisiología , Modelos Neurológicos , Animales , Conducta Animal/fisiología , Encéfalo/fisiología , Humanos , Modelos Animales , Optogenética
13.
Artif Life ; 22(2): 153-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26934090

RESUMEN

We introduce a spatial model of concentration dynamics that supports the emergence of spatiotemporal inhomogeneities that engage in metabolism-boundary co-construction. These configurations exhibit disintegration following some perturbations, and self-repair in response to others. We define robustness as a viable configuration's tendency to return to its prior configuration in response to perturbations, and plasticity as a viable configuration's tendency to change to other viable configurations. These properties are demonstrated and quantified in the model, allowing us to map a space of viable configurations and their possible transitions. Combining robustness and plasticity provides a measure of viability as the average expected survival time under ongoing perturbation, and allows us to measure how viability is affected as the configuration undergoes transitions. The framework introduced here is independent of the specific model we used, and is applicable for quantifying robustness, plasticity, and viability in any computational model of artificial life that demonstrates the conditions for viability that we promote.


Asunto(s)
Simulación por Computador , Redes y Vías Metabólicas , Modelos Biológicos , Vida
14.
PLoS One ; 10(10): e0140397, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26465883

RESUMEN

Understanding how information about external stimuli is transformed into behavior is one of the central goals of neuroscience. Here we characterize the information flow through a complete sensorimotor circuit: from stimulus, to sensory neurons, to interneurons, to motor neurons, to muscles, to motion. Specifically, we apply a recently developed framework for quantifying information flow to a previously published ensemble of models of salt klinotaxis in the nematode worm Caenorhabditis elegans. Despite large variations in the neural parameters of individual circuits, we found that the overall information flow architecture circuit is remarkably consistent across the ensemble. This suggests structural connectivity is not necessarily predictive of effective connectivity. It also suggests information flow analysis captures general principles of operation for the klinotaxis circuit. In addition, information flow analysis reveals several key principles underlying how the models operate: (1) Interneuron class AIY is responsible for integrating information about positive and negative changes in concentration, and exhibits a strong left/right information asymmetry. (2) Gap junctions play a crucial role in the transfer of information responsible for the information symmetry observed in interneuron class AIZ. (3) Neck motor neuron class SMB implements an information gating mechanism that underlies the circuit's state-dependent response. (4) The neck carries more information about small changes in concentration than about large ones, and more information about positive changes in concentration than about negative ones. Thus, not all directions of movement are equally informative for the worm. Each of these findings corresponds to hypotheses that could potentially be tested in the worm. Knowing the results of these experiments would greatly refine our understanding of the neural circuit underlying klinotaxis.


Asunto(s)
Caenorhabditis elegans/fisiología , Quimiotaxis , Modelos Neurológicos , Red Nerviosa/fisiología , Transmisión Sináptica , Animales , Uniones Comunicantes/fisiología , Interneuronas/fisiología , Neuronas Motoras/fisiología
15.
Cogn Sci ; 39(1): 1-38, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25039535

RESUMEN

There has been considerable debate in the literature about the relative merits of information processing versus dynamical approaches to understanding cognitive processes. In this article, we explore the relationship between these two styles of explanation using a model agent evolved to solve a relational categorization task. Specifically, we separately analyze the operation of this agent using the mathematical tools of information theory and dynamical systems theory. Information-theoretic analysis reveals how task-relevant information flows through the system to be combined into a categorization decision. Dynamical analysis reveals the key geometrical and temporal interrelationships underlying the categorization decision. Finally, we propose a framework for directly relating these two different styles of explanation and discuss the possible implications of our analysis for some of the ongoing debates in cognitive science.


Asunto(s)
Encéfalo/fisiología , Cognición/fisiología , Modelos Teóricos , Algoritmos , Humanos , Teoría de la Información
16.
Artif Life ; 21(1): 1-19, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25148547

RESUMEN

Maturana and Varela's concept of autopoiesis defines the essential organization of living systems and serves as a foundation for their biology of cognition and the enactive approach to cognitive science. As an initial step toward a more formal analysis of autopoiesis, this article investigates its application to the compact, recurrent spatiotemporal patterns that arise in Conway's Game-of-Life cellular automaton. In particular, we demonstrate how such entities can be formulated as self-constructing networks of interdependent processes that maintain their own boundaries. We then characterize the specific organizations of several such entities, suggest a way to simplify the descriptions of these organizations, and briefly consider the transformation of such organizations over time.

17.
Artif Life ; 20(2): 183-206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24494612

RESUMEN

This article examines in some technical detail the application of Maturana and Varela's biology of cognition to a simple concrete model: a glider in the game of Life cellular automaton. By adopting an autopoietic perspective on a glider, the set of possible perturbations to it can be divided into destructive and nondestructive subsets. From a glider's reaction to each nondestructive perturbation, its cognitive domain is then mapped. In addition, the structure of a glider's possible knowledge of its immediate environment, and the way in which that knowledge is grounded in its constitution, are fully described. The notion of structural coupling is then explored by characterizing the paths of mutual perturbation that a glider and its environment can undergo. Finally, a simple example of a communicative interaction between two gliders is given. The article concludes with a discussion of the potential implications of this analysis for the enactive approach to cognition.


Asunto(s)
Inteligencia Artificial , Cognición , Teoría del Juego , Modelos Teóricos , Humanos , Vida , Modelos Biológicos , Modelos Neurológicos
18.
PLoS Comput Biol ; 9(2): e1002890, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23408877

RESUMEN

Increased efforts in the assembly and analysis of connectome data are providing new insights into the principles underlying the connectivity of neural circuits. However, despite these considerable advances in connectomics, neuroanatomical data must be integrated with neurophysiological and behavioral data in order to obtain a complete picture of neural function. Due to its nearly complete wiring diagram and large behavioral repertoire, the nematode worm Caenorhaditis elegans is an ideal organism in which to explore in detail this link between neural connectivity and behavior. In this paper, we develop a neuroanatomically-grounded model of salt klinotaxis, a form of chemotaxis in which changes in orientation are directed towards the source through gradual continual adjustments. We identify a minimal klinotaxis circuit by systematically searching the C. elegans connectome for pathways linking chemosensory neurons to neck motor neurons, and prune the resulting network based on both experimental considerations and several simplifying assumptions. We then use an evolutionary algorithm to find possible values for the unknown electrophsyiological parameters in the network such that the behavioral performance of the entire model is optimized to match that of the animal. Multiple runs of the evolutionary algorithm produce an ensemble of such models. We analyze in some detail the mechanisms by which one of the best evolved circuits operates and characterize the similarities and differences between this mechanism and other solutions in the ensemble. Finally, we propose a series of experiments to determine which of these alternatives the worm may be using.


Asunto(s)
Conducta Animal/fisiología , Caenorhabditis elegans/anatomía & histología , Caenorhabditis elegans/fisiología , Quimiotaxis/fisiología , Biología Computacional/métodos , Conectoma/métodos , Modelos Neurológicos , Algoritmos , Animales , Neuronas Motoras/fisiología , Células Receptoras Sensoriales/fisiología
19.
Chaos ; 21(3): 037104, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21974667

RESUMEN

Understanding the mechanisms of distributed computation in cellular automata requires techniques for characterizing the emergent structures that underlie information processing in such systems. Recently, techniques from information theory have been brought to bear on this problem. Building on this work, we utilize the new technique of partial information decomposition to show that previous information-theoretic measures can confound distinct sources of information. We then propose a new set of filters and demonstrate that they more cleanly separate out the background domains, particles, and collisions that are typically associated with information storage, transfer, and modification in cellular automata.


Asunto(s)
Teoría de la Información , Modelos Teóricos , Entropía , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA