RESUMEN
Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance-dependent mortality in the seed-to-seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival-distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen-Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50-ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree-census records spanning the 1988-2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen-Connell patterns are very rare among those species; that distance-dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance-dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species.
Asunto(s)
Bosques , Plantones , Teorema de Bayes , Colorado , Panamá , Semillas , Clima TropicalRESUMEN
Secondary compounds in fruit mediate interactions with natural enemies and seed dispersers, influencing plant survival and species distributions. The functions of secondary metabolites in plant defenses have been well-studied in green tissues, but not in reproductive structures of plants. In this study, the distribution of toxicity within plants was quantified and its influence on seed survival was determined in Central Panama. To investigate patterns of allocation to chemical defenses and shifts in allocation with fruit development, I quantified variation in toxicity between immature and mature fruit and between the seed and pericarp for eleven species. Toxicity of seed and pericarp was compared to leaf toxicity for five species. Toxicity was measured as reduced hyphal growth of two fungal pathogens, Phoma sp. and Fusarium sp., and reduced survivorship of brine shrimp, Artemia franciscana, across a range of concentrations of crude extract. I used these measures of potential toxicity against generalist natural enemies to examine the effect of fruit toxicity on reductions of fruit development and seed survival by vertebrates, invertebrates, and pathogens measured for seven species in a natural enemy removal experiment. The seed or pericarp of all vertebrate- and wind-dispersed species reduced Artemia survivorship and hyphal growth of Fusarium during the immature and mature stages. Only mature fruit of two vertebrate-dispersed species reduced hyphal growth of Phoma. Predispersal seed survival increased with toxicity of immature fruit to Artemia during germination and decreased with toxicity to fungi during fruit development. This study suggests that fruit toxicity against generalist natural enemies may be common in Central Panama. These results support the hypothesis that secondary metabolites in fruit have adaptive value and are important in the evolution of fruit-frugivore interactions.
Asunto(s)
Frutas/inmunología , Inmunidad de la Planta , Semillas/inmunología , Árboles/inmunología , Animales , Artemia/efectos de los fármacos , Artemia/crecimiento & desarrollo , Ascomicetos/efectos de los fármacos , Ascomicetos/crecimiento & desarrollo , Ecosistema , Frutas/microbiología , Fusarium/efectos de los fármacos , Fusarium/crecimiento & desarrollo , Germinación/inmunología , Interacciones Huésped-Patógeno , Panamá , Dispersión de Semillas , Semillas/microbiología , Árboles/microbiologíaRESUMEN
The importance of vertebrates, invertebrates, and pathogens for plant communities has long been recognized, but their absolute and relative importance in early recruitment of multiple coexisting tropical plant species has not been quantified. Further, little is known about the relationship of fruit traits to seed mortality due to natural enemies in tropical plants. To investigate the influences of vertebrates, invertebrates, and pathogens on reproduction of seven canopy plant species varying in fruit traits, we quantified reductions in fruit development and seed germination due to vertebrates, invertebrates, and fungal pathogens through experimental removal of these enemies using canopy exclosures, insecticide, and fungicide, respectively. We also measured morphological fruit traits hypothesized to mediate interactions of plants with natural enemies of seeds. Vertebrates, invertebrates, and fungi differentially affected predispersal seed mortality depending on the plant species. Fruit morphology explained some variation among species; species with larger fruit and less physical protection surrounding seeds exhibited greater negative effects of fungi on fruit development and germination and experienced reduced seed survival integrated over fruit development and germination in response to vertebrates. Within species, variation in seed size also contributed to variation in natural enemy effects on seed viability. Further, seedling growth was higher for seeds that developed in vertebrate exclosures for Anacardium excelsum and under the fungicide treatment for Castilla elastica, suggesting that predispersal effects of natural enemies may carry through to the seedling stage. This is the first experimental test of the relative effects of vertebrates, invertebrates, and pathogens on seed survival in the canopy. This study motivates further investigation to determine the generality of our results for plant communities. If there is strong variation in natural enemy attack among species related to differences in fruit morphology, then quantification of fruit traits will aid in predicting the outcomes of interactions between plants and their natural enemies. This is particularly important in tropical forests, where high species diversity makes it logistically impossible to study every plant life history stage of every species.