Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Expert Opin Ther Pat ; 33(3): 193-209, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36786067

RESUMEN

INTRODUCTION: Chagas disease is a neglected, endemic disease in 21 countries, spreading to non-endemic countries too. Like other neglected diseases affecting primarily low- and middle-income countries, low investment and the absence of new chemical entities from the industry occurred. Increased knowledge about the parasite, drug targets, and vector control has been observed, but this was not translated into new drugs. The partnerships of pharmaceutical companies with academies and consolidated networks to increment the new drugs and treatment research in Chagas disease are shown. The current review analyzes in detail the patents dealing with compounds candidates for new drugs and treatment. The patent search was performed using Orbit Intelligence® software in the 2001-2021 period. AREAS COVERED: The author focused specifically on patents for the treatment, the new candidates disclosed in the patents, and the barriers to innovation. EXPERT OPINION: Patents in Chagas disease have been increasing in the last years, although they do not bring new compounds to an effective treatment.


Asunto(s)
Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Humanos , Patentes como Asunto , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/epidemiología , Enfermedad de Chagas/parasitología , Sistemas de Liberación de Medicamentos , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
2.
Nat Prod Res ; 37(18): 3177-3183, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36398845

RESUMEN

Brugmansia suaveolens Bercht. & J. Presl represents a promising source of new active molecules. Therefore, the aim of the study is to outline the profile of secondary metabolites and their therapeutic potential and in vitro safety properties. The identification of substances was carried out through the chromatographic profile, while the evaluation of therapeutic use was conducted through in vitro biological assays of antioxidant and antimicrobial activity and quantification of the total phenolic content. The safety of the extracts was evaluated using a cytotoxicity assay. The results found revealed the presence of different secondary metabolites, such as flavonoids and alkaloids. Biological assays showed promising antimicrobial activity in gram-negative strains. Regarding safety, greater cytotoxicity is observed in macrophage cells. The study demonstrated that the extracts are potent for therapeutic use, aiming at the development of a phytoproduct for topical use, providing an innovative, relevant and significant character for future research.

3.
Expert Opin Drug Discov ; 17(10): 1147-1158, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36039500

RESUMEN

INTRODUCTION: Carbonic anhydrase (CA) arose significant interest as a potential new target for Chagas disease since its discovery in Trypanosoma cruzi in 2013. Benznidazole and Nifurtimox have been used for Chagas disease treatment for 60 years despite all efforts done for obtaining more efficient treatments, acting in the acute and chronic phases of illness, with fewer side effects and resistance induction. AREAS COVERED: We discuss the positive and negative aspects of T. cruzi CA (TcCA) studies as a target for developing new drugs. The current research discoveries and the classes of TcCA inhibitors are reviewed. The sulfonamides and their derivatives are the main inhibitor classes, but hydroxamates and the thiols, were investigated too. These compounds inhibited the growth of the evolutive forms of the parasite. A comparative analysis was done with CAs from other Trypanosomatids and protozoans. EXPERT OPINION: The search for new targets and drugs is a significant challenge worldwide, and TcCA is a potential candidate for developing new drugs. Several studied inhibitors were active against Trypanosoma cruzi, but their penetration and toxicity problems emerged. New approaches are in progress to obtain inhibitors with desired properties, allowing further steps such as tests using an adequate animal model and subsequent developments for the preclinical testing.


Asunto(s)
Antiprotozoarios , Anhidrasas Carbónicas , Enfermedad de Chagas , Tripanocidas , Trypanosoma cruzi , Animales , Inhibidores de Anhidrasa Carbónica/farmacología , Enfermedad de Chagas/tratamiento farmacológico , Enfermedad de Chagas/parasitología , Antiprotozoarios/farmacología , Tripanocidas/farmacología
4.
Prep Biochem Biotechnol ; 52(10): 1109-1118, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35175876

RESUMEN

An enzymatic extract from Aspergillus niger 3T5B8 was produced by Solid State Fermentation (SSF) in aerated columns, using wheat bran as substrate. A combination of extracts produced using three different process conditions varying temperature, pH and aeration formed the final extract (Mixture). The Mixture was concentrated by an ultrafiltration process that partially purified and provided an efficient recovery of the enzymatic activities of xylanase (88.89%), polygalacturonase (89.3%), ß-glucosidase (93.15%), protease (98.68%) and carboxymethylcellulase (CMCase) (98.93%). SDS-PAGE analysis showed 15 visible protein bands in the crude and concentrated Mixture with molecular weights ranging from 15.1 to 104.6 kDa. Thin layer chromatography confirmed the effective action of ß-glucosidase and xylanase hydrolysis activities over cellobiose and xylan, respectively. A central composite design (CCD) with two variables and four replicates at the center points was used to determine the optimal temperature and pH for CMCase and ß-glucosidase. The optimal temperature was 78.9 °C and pH 3.8 for CMCase and 52.8 °C and pH 4.8 for ß-glucosidase, respectively.


Asunto(s)
Aspergillus niger , beta-Glucosidasa , Aspergillus niger/metabolismo , Fermentación , beta-Glucosidasa/metabolismo , Temperatura , Extractos Vegetales/metabolismo , Concentración de Iones de Hidrógeno
5.
Nanotechnology ; 30(42): 425101, 2019 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-31290755

RESUMEN

Increasing resistance to current fungicides is a clinical problem that leads to the need for new treatment strategies. Clove oil (CO) has already been described as having antifungal action. However, it should not be applied directly to the skin as it may be irritating. One option for CO delivery and suitable topical application would be nanoemulsions (NEs). NEs have advantages such as decreased irritant effects and lower dose use. The purpose of this work was the development of NEs containing CO and in vitro evaluation against Candida albicans and Candida glabrata. The NEs were produced by an ultrasonic processor with different proportions of CO and Pluronic® F-127. In order to determine the best composition and ultrasound amplitude, an experimental design was performed. For the evaluation, droplet size and polydispersity index (PdI) were used. After the stability study, in vitro activity against C. albicans and C. glabrata was evaluated. NEs selected for the stability study, with diameter <40 nm and PdI <0.2, remained stable for 420 d. Activity against Candida spp. was improved when the CO was nanoemulsified, for it possibly leads to a better interaction between the active and the microorganisms, mainly in C. albicans.


Asunto(s)
Aceite de Clavo/química , Emulsiones/química , Nanoestructuras/química , Candida albicans/efectos de los fármacos , Candida glabrata/efectos de los fármacos , Aceite de Clavo/farmacología , Estabilidad de Medicamentos , Concentración de Iones de Hidrógeno , Pruebas de Sensibilidad Microbiana , Tamaño de la Partícula , Poloxámero/química , Sonicación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA