Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 12(18)2023 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-37765491

RESUMEN

Introducing plants in the design of biophilic indoor environments is fundamental for improving human health, well-being, and performance. Previous studies showed that the phenotype of the model plant Arabidopsis thaliana grown under LED-sourced CoeLux® lighting systems was characterized by low biomass production rates, a small leaf area, and a low lamina-to-petiole length ratio, suggesting the onset of a strong shade avoidance syndrome. Therefore, it is essential to identify new strategies to improve plant growth under these peculiar light conditions. In the present work, we investigated the effects of two growing media (i.e., low-fertility soil and soil-less substrate), solid and liquid fertilizers, manure, biochar, perlite, mirror reflection of light, and a 24 h photoperiod on A. thaliana plants growing under CoeLux® lighting systems at a light intensity of 30 µmol m-2s-1. We found that the biochar soil amendment to low-fertility soil increases both the above-ground plant biomass and leaf area. Furthermore, the application of a mirror behind the plants and a continuous photoperiod improves not only the biomass and the leaf area but also the lamina-to-petiole length ratio. The combination of different beneficial treatments can further boost plant growth in the low-intensity light environment characterizing the CoeLux® biophilic lighting systems.

2.
Front Plant Sci ; 14: 1093883, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36743499

RESUMEN

Investigating morphological and molecular mechanisms that plants adopt in response to artificial biophilic lighting is crucial for implementing biophilic approaches in indoor environments. Also, studying the essential oils (EOs) composition in aromatic plants can help unveil the light influence on plant metabolism and open new investigative routes devoted to producing valuable molecules for human health and commercial applications. We assessed the growth performance and the EOs composition of Mentha x piperita and Ocimum basilicum grown under an innovative artificial biophilic lighting system (CoeLux®), that enables the simulation of natural sunlight with a realistic sun perception, and compared it to high-pressure sodium lamps (control) We found that plants grown under the CoeLux® light type experienced a general suppression of both above and belowground biomass, a high leaf area, and a lower leaf thickness, which might be related to the shade avoidance syndrome. The secondary metabolites composition in the plants' essential oils was scarcely affected by both light intensity and spectral composition of the CoeLux® light type, as similarities above 80% were observed with respect to the control light treatments and within both plant species. The major differences were detected with respect to the EOs extracted from plants grown under natural sunlight (52% similarity in M. piperita and 75% in O. basilicum). Overall, it can be speculated that the growth of these two aromatic plants under the CoeLux® lighting systems is a feasible strategy to improve biophilic approaches in closed environments that include both plants and artificial sunlight. Among the two plant species analyzed, O. basilicum showed an overall better performance in terms of both morphological traits and essential oil composition. To increase biomass production and enhance the EOs quality (e.g., higher menthol concentrations), further studies should focus on technical solutions to raise the light intensity irradiating plants during their growth under the CoeLux® lighting systems.

3.
Front Plant Sci ; 13: 1062911, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36523619

RESUMEN

We aimed to understand the effect of mulching (i.e., cutting and leaving the crushed biomass to decompose in situ) on above- and below-ground plant functional traits and whether this practice may be a potential tool for enhancing the phytoremediation of lowland hay meadows. To this aim, we evaluated at the community level seven years of mulching application in a PCBs and HMs soil-polluted Site of National Interest (SIN Brescia-Caffaro) through the analysis of the floristic composition and the above- and below-ground plant traits. We found that the abandonment of agricultural activities led to a marked increase in the soil organic carbon and pH, and the over-imposed mulching additionally induced a slight increase in soil nutrients. Mulching favored the establishment of a productive plant community characterized by a more conservative-resource strategy, a higher biomass development, and lower plasticity through an adaptative convergence between above- and below-ground organs. In particular, the analysis of the root depth distribution highlighted the key role of roots living in the upper soil layer (10 cm). Mulching did not show a significant effect on plant species known to be effective in terms of PCB phytoremediation. However, the mulching application appears to be a promising tool for enhancing the root web that functions as the backbone for the proliferation of microbes devoted to organic contaminants' degradation and selects a two-fold number of plant species known to be metal-tolerant. However, besides these potential positive effects of the mulching application, favoring species with a higher biomass development, in the long term, may lead to a biodiversity reduction and thus to potential consequences also on the diversity of native species important for the phytoremediation.

4.
PLoS One ; 17(6): e0269868, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35687579

RESUMEN

Using specific photoreceptors, plants can sense light signals fundamental to their growth and development under changing light conditions. Phytochromes sense red and far-red light, cryptochromes and phototropins sense UV-A and blue light, while the UVR8 gene senses UV-B signals. The study of the molecular mechanisms used by plants to respond to artificial biophilic lighting is of pivotal importance for the implementation of biophilic approaches in indoor environments. CoeLux® is a new lighting system that reproduces the effect of natural sunlight entering through an opening in the ceiling, with a realistic sun perceived at an infinite distance surrounded by a clear blue sky. We used the model plant Arabidopsis thaliana to assess the gene expression of the main plant photoreceptors at different light intensities and at different times after exposure to the CoeLux® light type, using high-pressure sodium (HPS) lamps as control light type. Genes belonging to different families of photoreceptors showed a similar expression pattern, suggesting the existence of a common upstream regulation of mRNA transcription. In particular, PHYA, PHYC, PHYD, CRY1, CRY2, PHOT1, and UVR8, showed a common expression pattern with marked differences between the two light types applied; under the HPS light type, the expression levels are raising with the decrease of light intensity, while under the CoeLux® light type, the expression levels remain nearly constant at a high fold. Moreover, we showed that under biophilic illumination the light spectrum plays a crucial role in the response of plants to light intensity, both at the molecular and morphological levels.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Fitocromo , Apoproteínas/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas Cromosómicas no Histona/genética , Criptocromos/genética , Criptocromos/metabolismo , Expresión Génica , Regulación de la Expresión Génica de las Plantas , Iluminación , Fitocromo/metabolismo
5.
Plants (Basel) ; 10(7)2021 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-34203336

RESUMEN

The CoeLux® lighting system reproduces the true effect of natural sunlight entering through an opening in the ceiling, with a realistic sun perceived at an infinite distance surrounded by a clear blue sky. It has already been demonstrated that this new lighting system generates long-term positive effects on human beings; however, there are no investigations so far concerning the plant responses to CoeLux® lighting. To fill this gap, the model plant Arabidopsis thaliana L. was grown at four different distances from the light source, corresponding to four different light intensities (120, 70, 30, 20 µmol m-2 s-1). High-pressure sodium lamps were used as control light. Plant phenology and morpho-physiological traits were monitored to assess for the first time the ability of plants to grow and develop under the light spectrum and intensity of the CoeLux® system. Plants grown at the lower light intensities showed a delayed life cycle and were significantly smaller than plants grown with more light. Furthermore, plants grown under the CoeLux® light type showed an additional deficit when compared to control plants. Overall, our results show that both the light spectrum and intensity of the CoeLux® system had a strong impact on A. thaliana growth performance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA