Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-36362438

RESUMEN

Mitochondria are central organelles in the homeostasis of the cardiovascular system via the integration of several physiological processes, such as ATP generation via oxidative phosphorylation, synthesis/exchange of metabolites, calcium sequestration, reactive oxygen species (ROS) production/buffering and control of cellular survival/death. Mitochondrial impairment has been widely recognized as a central pathomechanism of almost all cardiovascular diseases, rendering these organelles important therapeutic targets. Mitochondrial dysfunction has been reported to occur in the setting of drug-induced toxicity in several tissues and organs, including the heart. Members of the drug classes currently used in the therapeutics of cardiovascular pathologies have been reported to both support and undermine mitochondrial function. For the latter case, mitochondrial toxicity is the consequence of drug interference (direct or off-target effects) with mitochondrial respiration/energy conversion, DNA replication, ROS production and detoxification, cell death signaling and mitochondrial dynamics. The present narrative review aims to summarize the beneficial and deleterious mitochondrial effects of common cardiovascular medications as described in various experimental models and identify those for which evidence for both types of effects is available in the literature.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Mitocondrias , Humanos , Especies Reactivas de Oxígeno/metabolismo , Mitocondrias/metabolismo , Muerte Celular , Homeostasis , Transducción de Señal , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/metabolismo
2.
Int J Mol Sci ; 22(21)2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34769217

RESUMEN

Amiodarone is a potent antiarrhythmic drug and displays substantial liver toxicity in humans. It has previously been demonstrated that amiodarone and its metabolite (desethylamiodarone, DEA) can inhibit mitochondrial function, particularly complexes I (CI) and II (CII) of the electron transport system in various animal tissues and cell types. The present study, performed in human peripheral blood cells, and one liver-derived human cell line, is primarily aimed at assessing the concentration-dependent effects of these drugs on mitochondrial function (respiration and cellular ATP levels). Furthermore, we explore the efficacy of a novel cell-permeable succinate prodrug in alleviating the drug-induced acute mitochondrial dysfunction. Amiodarone and DEA elicit a concentration-dependent impairment of mitochondrial respiration in both intact and permeabilized platelets via the inhibition of both CI- and CII-supported respiration. The inhibitory effect seen in human platelets is also confirmed in mononuclear cells (PBMCs) and HepG2 cells. Additionally, amiodarone elicits a severe concentration-dependent ATP depletion in PBMCs, which cannot be explained solely by mitochondrial inhibition. The succinate prodrug NV118 alleviates the respiratory deficit in platelets and HepG2 cells acutely exposed to amiodarone. In conclusion, amiodarone severely inhibits metabolism in primary human mitochondria, which can be counteracted by increasing mitochondrial function using intracellular delivery of succinate.


Asunto(s)
Amiodarona/toxicidad , Antiarrítmicos/toxicidad , Mitocondrias/efectos de los fármacos , Sustancias Protectoras/farmacología , Ácido Succínico/farmacología , Adenosina Trifosfato/metabolismo , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Respiración de la Célula/efectos de los fármacos , Células Hep G2 , Humanos , Mitocondrias/metabolismo , Profármacos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA