Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Physiol Rep ; 8(13): e14481, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32638521

RESUMEN

Mutations in the tumor suppressor gene BRCA2 (BReast CAncer susceptibility gene 2) predispose carriers to breast, ovarian, and other cancers. In response to DNA damage, BRCA2 participates in homology-directed DNA damage repair to maintain genome stability. Genome-wide association studies have identified an association between BRCA2 single nucleotide polymorphisms and plasma-lipid levels and lipid deregulation in humans. To date, DNA damage, apoptosis, and lipid deregulation are recognized as central pathways for endothelial dysfunction and atherosclerosis; however, the role of BRCA2 in endothelial dysfunction remains to be elucidated. To determine the role of BRCA2 in endothelial dysfunction, BRCA2 was silenced in human umbilical vein endothelial cells (ECs) and assessed for markers of DNA damage, apoptosis, and endothelial function following oxidized low-density lipoprotein (oxLDL) treatment. OxLDL was found to induce significant reactive oxygen species (ROS) production in BRCA2-silenced ECs. This increase in ROS production was associated with exacerbated DNA damage evidenced by increased expression and activation of DNA double-stranded break (DSB) marker γH2AX and reduced RAD51-foci formation-an essential regulator of DSB repair. Increased DSBs were associated with enhanced expression and activation of pro-apoptotic p53 and significant apoptosis in oxLDL-treated BRCA2-silenced ECs. Loss of BRCA2 in ECs was further associated with oxLDL-induced impaired tube-forming potential and eNOS expression. Collectively, the data reveals, for the first time, a novel role of BRCA2 as a regulator of EC survival and function in the setting of oxLDL treatment in vitro. Additionally, the data provide important clues regarding the potential susceptibility of BRCA2 mutation carriers to endothelial dysfunction, atherosclerosis, and other cardiovascular diseases.


Asunto(s)
Apoptosis , Proteína BRCA2/genética , Roturas del ADN de Doble Cadena , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Lipoproteínas LDL/metabolismo , Animales , Proteína BRCA2/deficiencia , Humanos , Lipoproteínas LDL/toxicidad , Masculino , Ratones , Óxido Nítrico Sintasa de Tipo III/genética , Óxido Nítrico Sintasa de Tipo III/metabolismo , Especies Reactivas de Oxígeno/metabolismo
2.
Sci Rep ; 10(1): 4466, 2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32161282

RESUMEN

Intraflagellar transport protein 88 (Ift88) is required for ciliogenesis and shear stress-induced dissolution of cilia in embryonic endothelial cells coincides with endothelial-to-mesenchymal transition (EndMT) in the developing heart. EndMT is also suggested to underlie heart and lung fibrosis, however, the mechanism linking endothelial Ift88, its effect on EndMT and organ fibrosis remains mainly unexplored. We silenced Ift88 in endothelial cells (ECs) in vitro and generated endothelial cell-specific Ift88-knockout mice (Ift88endo) in vivo to evaluate EndMT and its contribution towards organ fibrosis, respectively. Ift88-silencing in ECs led to mesenchymal cells-like changes in endothelial cells. The expression level of the endothelial markers (CD31, Tie-2 and VE-cadherin) were significantly reduced with a concomitant increase in the expression level of mesenchymal markers (αSMA, N-Cadherin and FSP-1) in Ift88-silenced ECs. Increased EndMT was associated with increased expression of profibrotic Collagen I expression and increased proliferation in Ift88-silenced ECs. Loss of Ift88 in ECs was further associated with increased expression of Sonic Hedgehog signaling effectors. In vivo, endothelial cells isolated from the heart and lung of Ift88endo mice demonstrated loss of Ift88 expression in the endothelium. The Ift88endo mice were born in expected Mendelian ratios without any adverse cardiac phenotypes at baseline. Cardiac and pulmonary endothelial cells isolated from the Ift88endo mice demonstrated signs of EndMT and bleomycin treatment exacerbated pulmonary fibrosis in Ift88endo mice. Pressure overload stress in the form of aortic banding did not reveal a significant difference in cardiac fibrosis between Ift88endo mice and control mice. Our findings demonstrate a novel association between endothelial cilia with EndMT and cell proliferation and also show that loss of endothelial cilia-associated increase in EndMT contributes specifically towards pulmonary fibrosis.


Asunto(s)
Bleomicina/efectos adversos , Transición Epitelial-Mesenquimal/genética , Fibrosis Pulmonar/etiología , Fibrosis Pulmonar/patología , Mucosa Respiratoria/metabolismo , Mucosa Respiratoria/patología , Proteínas Supresoras de Tumor/deficiencia , Animales , Biopsia , Movimiento Celular , Proliferación Celular , Susceptibilidad a Enfermedades , Técnicas de Inactivación de Genes , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Fibrosis Pulmonar/complicaciones , Fibrosis Pulmonar/metabolismo , Enfermedad Cardiopulmonar/etiología , Enfermedad Cardiopulmonar/metabolismo , Enfermedad Cardiopulmonar/patología , Mucosa Respiratoria/ultraestructura , Transducción de Señal , Factor de Crecimiento Transformador beta/metabolismo , Vía de Señalización Wnt
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA