Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Cell Physiol ; 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37530742

RESUMEN

In plant organelles, each C-to-U RNA editing site is specifically recognized by PLS class pentatricopeptide repeat (PPR) proteins with E1-E2, E1-E2-E+, or E1-E2-DYW domain extensions at the C-terminus. The distance between the PPR domain binding site and the RNA editing site is usually fixed at four bases, increasing the specificity of target site recognition in this system. We here report, in contrast to the general case, on MEF28, which edits two adjacent mitochondrial sites, nad2-89 and nad2-90. When the sDYW domain of MEF28 was replaced with one derived from MEF11 or CRR22, the ability to edit downstream sites was lost, suggesting that the DYW domain of MEF28 provides unique target flexibility for two continuous cytidines. By contrast, substitutions of the entire E1-E2-DYW domains by MEF19E1-E2, SLO2E1-E2-E+, or the CRR22E1-E2-E+ target both nad2 sites. In these cases, access to the contiguous sites in the chimeric PPR proteins is likely to be provided by the trans-associated DYW1-like proteins via the replaced E1-E2 or E1-E2-E+ domains. Furthermore, we demonstrated that the gating domain of MEF28 plays an important role in specific target site recognition of the DYW domain. This finding suggests that the DYW domain and its internal gating domain fine-tune the specificity of the target site, which is valuable information for designing specific synthetic RNA editing tools based on plant RNA editing factors.

2.
Biochim Biophys Acta Gene Regul Mech ; 1860(8): 813-828, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28549935

RESUMEN

In plant organelles specific nucleotide motifs at C to U RNA editing sites are recognized by the PLS-class of pentatricopeptide repeat (PPR) proteins, which are additionally characterized by a C-terminal E domain. The PPR elements bind the nucleotides in the target RNA, while the function of the E domain has remained unknown. At most sites RNA editing also requires multiple organellar RNA editing factor (MORF) proteins. To understand how these two types of proteins are involved in RNA editing complexes, we systematically analyzed their protein-protein interactions. In vivo pull-down and yeast two-hybrid assays show that MORF proteins connect with selected PPR proteins. In a loss of function mutant of MORF1, a single amino acid alteration in the conserved MORF domain abrogates interactions with many PLS-class PPR proteins, implying the requirement of direct interaction to PPR proteins for the RNA editing function of MORF1. Subfragment analyses show that predominantly the N-terminal/central regions of the MORF domain in MORF1 and MORF3 bind the PPR proteins. Within the PPR proteins, the E domains in addition to PPR elements contact MORF proteins. In chimeric PPR proteins, different E domains alter the specificity of the interaction with MORF proteins. The selective interactions between E domain containing PPR and MORF proteins suggest that the E domains and MORF proteins play a key role for specific protein complexes to assemble at different RNA editing sites.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Dominios Proteicos/genética , Edición de ARN/genética , ARN de Planta/genética , Orgánulos/genética , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas de Unión al ARN/genética , Técnicas del Sistema de Dos Híbridos
3.
PLoS One ; 10(10): e0140680, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26470017

RESUMEN

RNA editing in plant mitochondria and plastids alters specific nucleotides from cytidine (C) to uridine (U) mostly in mRNAs. A number of PLS-class PPR proteins have been characterized as RNA recognition factors for specific RNA editing sites, all containing a C-terminal extension, the E domain, and some an additional DYW domain, named after the characteristic C-terminal amino acid triplet of this domain. Presently the recognition factors for more than 300 mitochondrial editing sites are still unidentified. In order to characterize these missing factors, the recently proposed computational prediction tool could be of use to assign target RNA editing sites to PPR proteins of yet unknown function. Using this target prediction approach we identified the nuclear gene MEF35 (Mitochondrial Editing Factor 35) to be required for RNA editing at three sites in mitochondria of Arabidopsis thaliana. The MEF35 protein contains eleven PPR repeats and E and DYW extensions at the C-terminus. Two T-DNA insertion mutants, one inserted just upstream and the other inside the reading frame encoding the DYW domain, show loss of editing at a site in each of the mRNAs for protein 16 in the large ribosomal subunit (site rpl16-209), for cytochrome b (cob-286) and for subunit 4 of complex I (nad4-1373), respectively. Editing is restored upon introduction of the wild type MEF35 gene in the reading frame mutant. The MEF35 protein interacts in Y2H assays with the mitochondrial MORF1 and MORF8 proteins, mutation of the latter also influences editing at two of the three MEF35 target sites. Homozygous mutant plants develop indistinguishably from wild type plants, although the RPL16 and COB/CYTB proteins are essential and the amino acids encoded after the editing events are conserved in most plant species. These results demonstrate the feasibility of the computational target prediction to screen for target RNA editing sites of E domain containing PLS-class PPR proteins.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Complejo I de Transporte de Electrón/genética , Glicoproteínas de Membrana/genética , Proteínas Mitocondriales/metabolismo , Edición de ARN/genética , Elementos Reguladores de la Transcripción , Proteínas Ribosómicas/genética , Secuencia de Aminoácidos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiología , Secuencia de Bases , Complejo I de Transporte de Electrón/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/fisiología , Datos de Secuencia Molecular , Plantas Modificadas Genéticamente , Unión Proteica , Estructura Terciaria de Proteína , ARN/análisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , ARN de Planta/análisis , Proteínas Ribosómicas/metabolismo , Análisis de Secuencia de ARN
4.
J Biol Chem ; 290(10): 6445-56, 2015 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-25583991

RESUMEN

RNA editing in plastids and mitochondria of flowering plants requires pentatricopeptide repeat proteins (PPR proteins) for site recognition and proteins of the multiple organellar RNA editing factor (MORF) family as cofactors. Two MORF proteins, MORF5 and MORF8, are dual-targeted to plastids and mitochondria; two are targeted to plastids, and five are targeted to mitochondria. Pulldown assays from Arabidopsis thaliana tissue culture extracts with the mitochondrial MORF1 and the plastid MORF2 proteins, respectively, both identify the dual-targeted MORF8 protein, showing that these complexes can assemble in the organelles. We have now determined the scope of potential interactions between the various MORF proteins by yeast two-hybrid, in vitro pulldown, and bimolecular fluorescence complementation assays. The resulting MORF-MORF interactome identifies specific heteromeric MORF protein interactions in plastids and in mitochondria. Heteromers are observed for MORF protein combinations affecting a common site, suggesting their functional relevance. Most MORF proteins also undergo homomeric interactions. Submolecular analysis of the MORF1 protein reveals that the MORF-MORF protein connections require the C-terminal region of the central conserved MORF box. This domain has no similarity to known protein modules and may form a novel surface for protein-protein interactions.


Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Mapas de Interacción de Proteínas , Estructura Terciaria de Proteína , Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Mitocondrias/química , Mitocondrias/genética , Mitocondrias/metabolismo , Plastidios/química , Plastidios/genética , Plastidios/metabolismo , Unión Proteica , Multimerización de Proteína , Edición de ARN/genética
5.
Mitochondrion ; 19 Pt B: 191-7, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24732437

RESUMEN

RNA editing changes several hundred cytidines to uridines in the mRNAs of mitochondria in flowering plants. The target cytidines are identified by a subtype of PPR proteins characterized by tandem modules which each binds with a specific upstream nucleotide. Recent progress in correlating repeat structures with nucleotide identities allows to predict and identify target sites in mitochondrial RNAs. Additional proteins have been found to play a role in RNA editing; their precise function still needs to be elucidated. The enzymatic activity performing the C to U reaction may reside in the C-terminal DYW extensions of the PPR proteins; however, this still needs to be proven. Here we update recent progress in understanding RNA editing in flowering plant mitochondria.


Asunto(s)
Mitocondrias/enzimología , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Edición de ARN , ARN/metabolismo , Citidina/metabolismo , Plantas/enzimología , Plantas/genética , ARN Mensajero/metabolismo , ARN Mitocondrial , Uridina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA