Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioresour Technol ; 399: 130552, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38458262

RESUMEN

This research aimed to synthesise an effective hydrochar adsorbent from vineyard pruning wastes to remove emerging contaminants as a potential valorisation product. The adsorption capacity of the hydrochar was optimised using the Taguchi method. Four synthesis variables were evaluated: hydrothermal reaction temperature, use of H3PO4 as a catalyst, number of acetone washes, and type of chemical cold activation. The simultaneous adsorption of five model pesticides (clothianidin (CTD), acetamiprid (ACE), 2,4-D, metalaxyl (MET), and atrazine (ATZ)) at an initial pH of 7 was studied. At optimum conditions, the hydrochar presented a total adsorption capacity of 22.7 µmol/g, representing a 2.7-fold improvement with respect to pristine hydrochar performance. High percentage removals were achieved for all pollutants (85 % CTD, 94 % ACE, 86 % MET, and 95 % ATZ) except for 2,4-D (4 %). This research provides a valuable reference for developing hydrochar adsorbents for pollution control and the valorisation of biomass wastes.


Asunto(s)
Contaminantes Químicos del Agua , Agua , Temperatura , Adsorción , Frío , Ácido 2,4-Diclorofenoxiacético , Contaminantes Químicos del Agua/análisis , Cinética
2.
Sci Total Environ ; 846: 157173, 2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-35817118

RESUMEN

Bisphenol F (BPF) and bisphenol S (BPS) are the most employed substitutes of bisphenol A (BPA), after being restricted by legislation in different countries because of its endocrine disrupting behaviour. In the present work, a deep study was performed about the reactivity of BPF and BPS with ozone and hydroxyl radical. Firstly, the second order rate constants of ozone with the di-protonated, mono-protonated and deprotonated species of both bisphenols were determined to be 2.38 × 104, 1.31 × 109 and 1.43 × 109 M-1 s-1 for BPF and 5.01, 2.82 × 107 and 1.09 × 109 M-1 s-1 for BPS. Then, the second order rate constants for the reaction of hydroxyl radical with BPF and BPS were established through UV/H2O2 and UV experiments at pH 7, resulting in the values of 8.60 × 109 and 6.60 × 109 M-1 s-1, respectively. Finally, a study regarding the transformation products (TPs) from the reaction of both bisphenols with molecular ozone and hydroxyl radical was also performed. Hydroxylation in the ortho position of the phenol rings was observed as main degradation pathway. Additionally, most of the TPs were accumulated over the reactions at relatively high oxidant doses.


Asunto(s)
Radical Hidroxilo , Ozono , Compuestos de Bencidrilo , Peróxido de Hidrógeno , Cinética , Ozono/química , Fenoles/química
3.
J Hazard Mater ; 415: 125658, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-33752085

RESUMEN

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic has challenged societies around the globe. Technologies based on ozone, a powerful oxidant, have been evaluated to inactivate this virus in aerosols and fomites. However, the high data diversity hinders the possibility of establishing a common ground for determining best practices for the use of these technologies. Furthermore, there is a lack of consensus regarding which are the main mechanisms of ozone virus inactivation. This critical review examined the most relevant information available regarding ozone application in gas-phase for different viruses inactivation (including recent publications dealing with SARS-CoV-2), and pointed towards envelope alteration as the main reaction pathway for enveloped viruses, such as is the case of SARS-CoV-2. It could also be concluded that gaseous ozone can be indeed an effective disinfectant, successfully inactivating viruses such us influenza A H1N1, MERS-CoV, SARS-CoV-1 or even SARS-CoV-2 in aerosols or fomites. In reviewed works, low ozone exposures, just around 0.1-0.4 mg L-1 min, achieve about 4 log10 of inactivation in aerosols, while exposures between 1 and 4 mg L-1 min may be needed to guarantee an inactivation of 3-4 log10 in different fomites. Although further studies are required, ozone is an effective candidate to be used against SARS-CoV-2 or other viruses in surfaces and indoor locations.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Ozono , Humanos , SARS-CoV-2 , Inactivación de Virus
4.
Molecules ; 20(1): 503-18, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25558859

RESUMEN

Today, environmental impact associated with pollution treatment is a matter of great concern. A method is proposed for evaluating environmental risk associated with Advanced Oxidation Processes (AOPs) applied to wastewater treatment. The method is based on the type of pollution (wastewater, solids, air or soil) and on materials and energy consumption. An Environmental Risk Index (E), constructed from numerical criteria provided, is presented for environmental comparison of processes and/or operations. The Operation Environmental Risk Index (EOi) for each of the unit operations involved in the process and the Aspects Environmental Risk Index (EAj) for process conditions were also estimated. Relative indexes were calculated to evaluate the risk of each operation (E/NOP) or aspect (E/NAS) involved in the process, and the percentage of the maximum achievable for each operation and aspect was found. A practical application of the method is presented for two AOPs: photo-Fenton and heterogeneous photocatalysis with suspended TiO2 in Solarbox. The results report the environmental risks associated with each process, so that AOPs tested and the operations involved with them can be compared.


Asunto(s)
Ambiente , Aguas Residuales , Purificación del Agua/métodos , Oxidación-Reducción , Medición de Riesgo
5.
Chemosphere ; 72(1): 67-74, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18358513

RESUMEN

The photocatalytic efficiency of two 2,4,6-triphenylpyrylium (TP(+)) based photocatalysts (supported on silica or incorporated inside zeolite Beta, 3wt%) for the degradation of 2,4-dichlorophenol (DCP) in aqueous media has been compared with TiO(2) (Degussa P-25). It was found that the efficiency of the degradation depends on the photocatalytic setup, recirculation through a tubular reactor being highly unfavorable for the TP(+)-based photocatalysts due to the deposition of the silica or zeolite particles. In contrast, high efficiency in DCP disappearance (up to 87%) and in the total organic content decrease (up to 62%) were obtained using a discontinuous batch reactor in which the TP(+) photocatalysts were uniformly suspended. Kinetic studies were also made and DCP degradation follows a first order kinetics. The obtained kinetic constants when corrected to account for the influence of the fraction of light absorbed and the amount of active sites shows that the intrinsic activity of TP(+) adsorbed on silica or incorporated inside zeolite Beta was over one order of magnitude higher than TiO(2) activity.


Asunto(s)
Derivados del Benceno/química , Clorofenoles/química , Luz Solar , Titanio/química , Catálisis , Cinética , Fotoquímica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA