Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Food Sci Technol ; 58(8): 2936-2942, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34294955

RESUMEN

Diamine oxydase and peroxidase have been co-immobilized onto layered double hydroxide (LDH) thin films for the development of real-time histamine biosensors. The chosen LDH materials are Mg2AlCO3, Mg4FeCl and Ca2AlCl. Prepared bi-enzymatic hybrid nanomaterials are capable of detecting histamine through the electrochemical oxidation of H2O2 and are used as the sensitive membrane for potentiometric microelectrode. Histamine biosensors developed in this work have fast response of less than 20 s, are sensitive and selective, with a large dynamic range of 10-8-10-3 M and a limit of detection of less than 10-8 M. The detection limit of the developed bi-enzymatic biosensors is relatively higher than those corresponding with gas and liquid chromatography, which are still considered as the reference methods. Finally, the reproducibility, the specificity and the storage stability of the biosensors were studied.

2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3878-3881, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441209

RESUMEN

The aim of this work is to present KardiaTool platform, an integrated Point of Care (POC) solution for noninvasive diagnosis and therapy monitoring of Heart Failure (HF) patients. The KardiaTool platform consists of two components, KardiaPOC and KardiaSoft. KardiaPOC is an easy to use portable device with a disposable Lab-on-Chip (LOC) for the rapid, accurate, non-invasive and simultaneous quantitative assessment of four HF related biomarkers, from saliva samples. KardiaSoft is a decision support software based on predictive modeling techniques that analyzes the POC data and other patient's data, and delivers information related to HF diagnosis and therapy monitoring. It is expected that identifying a source comparable to blood, for biomarker information extraction, such as saliva, that is cost-effective, less invasive, more convenient and acceptable for both patients and healthcare professionals would be beneficial for the healthcare community. In this work the architecture and the functionalities of the KardiaTool platform are presented.


Asunto(s)
Insuficiencia Cardíaca , Sistemas de Atención de Punto , Biomarcadores , Humanos , Dispositivos Laboratorio en un Chip , Saliva
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA