Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mar Drugs ; 21(12)2023 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-38132959

RESUMEN

Many compounds produced by cyanobacteria act as serine protease inhibitors, such as the tetrapeptides aeruginosins (Aer), which are found widely distributed. The structural diversity of Aer is intriguingly high. However, the genetic basis of this remains elusive. In this study, we explored the genetic basis of Aer synthesis among the filamentous cyanobacteria Planktothrix spp. In total, 124 strains, isolated from diverse freshwater waterbodies, have been compared regarding variability within Aer biosynthesis genes and the consequences for structural diversity. The high structural variability could be explained by various recombination processes affecting Aer synthesis, above all, the acquisition of accessory enzymes involved in post synthesis modification of the Aer peptide (e.g., halogenases, glycosyltransferases, sulfotransferases) as well as a large-range recombination of Aer biosynthesis genes, probably transferred from the bloom-forming cyanobacterium Microcystis. The Aer structural composition differed between evolutionary Planktothrix lineages, adapted to either shallow or deep waterbodies of the temperate climatic zone. Thus, for the first time among bloom-forming cyanobacteria, chemical diversification of a peptide family related to eco-evolutionary diversification has been described. It is concluded that various Aer peptides resulting from the recombination event act in chemical defense, possibly as a replacement for microcystins.


Asunto(s)
Cianobacterias , Microcystis , Planktothrix , Cianobacterias/genética , Microcistinas/genética , Agua Dulce , Recombinación Genética
2.
Nat Commun ; 14(1): 6591, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37852975

RESUMEN

The factors that govern the geographical distribution of nitrogen fixation are fundamental to providing accurate nitrogen budgets in aquatic environments. Model-based insights have demonstrated that regional hydrodynamics strongly impact nitrogen fixation. However, the mechanisms establishing this physical-biological coupling have yet to be constrained in field surveys. Here, we examine the distribution of nitrogen fixation in Lake Tanganyika - a model system with well-defined hydrodynamic regimes. We report that nitrogen fixation is five times higher under stratified than under upwelling conditions. Under stratified conditions, the limited resupply of inorganic nitrogen to surface waters, combined with greater light penetration, promotes the activity of bloom-forming photoautotrophic diazotrophs. In contrast, upwelling conditions support predominantly heterotrophic diazotrophs, which are uniquely suited to chemotactic foraging in a more dynamic nutrient landscape. We suggest that these hydrodynamic regimes (stratification versus mixing) play an important role in governing both the rates and the mode of nitrogen fixation.


Asunto(s)
Lagos , Fijación del Nitrógeno , Hidrodinámica , Tanzanía , Nitrógeno
3.
mSphere ; 7(1): e0101321, 2022 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-35107340

RESUMEN

The nitrogen (N) cycle is of global importance, as N is an essential element and a limiting nutrient in terrestrial and aquatic ecosystems. Excessive anthropogenic N fertilizer usage threatens sensitive downstream aquatic ecosystems. Although freshwater lake sediments remove N through various microbially mediated processes, few studies have investigated the microbial communities involved. In an integrated biogeochemical and microbiological study on a eutrophic and oligotrophic lake, we estimated N removal rates from pore water concentration gradients in sediments. Simultaneously, the abundance of different microbial N transformation genes was investigated using metagenomics on a seasonal and spatial scale. We observed that contrasting nutrient concentrations in sediments were associated with distinct microbial community compositions and significant differences in abundances of various N transformation genes. For both characteristics, we observed a more pronounced spatial than seasonal variability within each lake. The eutrophic Lake Baldegg showed a higher denitrification potential with higher nosZ gene (N2O reductase) abundances and higher nirS:nirK (nitrite reductase) ratios, indicating a greater capacity for complete denitrification. Correspondingly, this lake had a higher N removal efficiency. The oligotrophic Lake Sarnen, in contrast, had a higher potential for nitrification. Specifically, it harbored a high abundance of Nitrospira, including some with the potential for comammox. Our results demonstrate that knowledge of the genomic N transformation potential is important for interpreting N process rates and understanding how the lacustrine sedimentary N cycle responds to variations in trophic conditions. IMPORTANCE Anthropogenic nitrogen (N) inputs can lead to eutrophication in surface waters, especially in N-limited coastal ecosystems. Lakes effectively remove reactive N by transforming it to N2 through microbial denitrification or anammox. The rates and distributions of these microbial processes are affected by factors such as the amount and quality of settling organic material and nitrate concentrations. However, the microbial communities mediating these N transformation processes in freshwater lake sediments remain largely unknown. We provide the first seasonally and spatially resolved metagenomic analysis of the N cycle in sediments of two lakes with different trophic states. We show that lakes with different trophic states select for distinct communities of N-cycling microorganisms with contrasting functional potentials for N transformation.


Asunto(s)
Lagos , Microbiota , Eutrofización , Lagos/microbiología , Nitratos/análisis , Nitrógeno
4.
Aquat Sci ; 83(2): 37, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33785997

RESUMEN

Freshwater lakes are essential hotspots for the removal of excessive anthropogenic nitrogen (N) loads transported from the land to coastal oceans. The biogeochemical processes responsible for N removal, the corresponding transformation rates and overall removal efficiencies differ between lakes, however, it is unclear what the main controlling factors are. Here, we investigated the factors that moderate the rates of N removal under contrasting trophic states in two lakes located in central Switzerland. In the eutrophic Lake Baldegg and the oligotrophic Lake Sarnen, we specifically examined seasonal sediment porewater chemistry, organic matter sedimentation rates, as well as 33-year of historic water column data. We find that the eutrophic Lake Baldegg, which contributed to the removal of 20 ± 6.6 gN m-2 year-1, effectively removed two-thirds of the total areal N load. In stark contrast, the more oligotrophic Lake Sarnen contributed to 3.2 ± 4.2 gN m-2 year-1, and had removed only one-third of the areal N load. The historic dataset of the eutrophic lake revealed a close linkage between annual loads of dissolved N (DN) and removal rates (NRR = 0.63 × DN load) and a significant correlation of the concentration of bottom water nitrate and removal rates. We further show that the seasonal increase in N removal rates of the eutrophic lake correlated significantly with seasonal oxygen fluxes measured across the water-sediment interface (R2 = 0.75). We suggest that increasing oxygen enhances sediment mineralization and stimulates nitrification, indirectly enhancing denitrification activity. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00027-021-00795-7.

5.
Nat Commun ; 12(1): 830, 2021 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-33547297

RESUMEN

In marine and freshwater oxygen-deficient zones, the remineralization of sinking organic matter from the photic zone is central to driving nitrogen loss. Deep blooms of photosynthetic bacteria, which form the suboxic/anoxic chlorophyll maximum (ACM), widespread in aquatic ecosystems, may also contribute to the local input of organic matter. Yet, the influence of the ACM on nitrogen and carbon cycling remains poorly understood. Using a suite of stable isotope tracer experiments, we examined the transformation of nitrogen and carbon under an ACM (comprising of Chlorobiaceae and Synechococcales) and a non-ACM scenario in the anoxic zone of Lake Tanganyika. We find that the ACM hosts a tight coupling of photo/litho-autotrophic and heterotrophic processes. In particular, the ACM was a hotspot of organic matter remineralization that controlled an important supply of ammonium driving a nitrification-anammox coupling, and thereby played a key role in regulating nitrogen loss in the oxygen-deficient zone.


Asunto(s)
Ciclo del Carbono/fisiología , Carbono/química , Chlorobi/metabolismo , Ciclo del Nitrógeno/fisiología , Nitrógeno/química , Synechococcus/metabolismo , Compuestos de Amonio/química , Compuestos de Amonio/metabolismo , Anaerobiosis/fisiología , Procesos Autotróficos , Carbono/metabolismo , Chlorobi/química , Clorofila/química , Clorofila/metabolismo , República Democrática del Congo , Ecosistema , Marcaje Isotópico , Lagos/química , Lagos/microbiología , Nitrificación/fisiología , Nitrógeno/metabolismo , Oxidación-Reducción , Synechococcus/química , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA