Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros











Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 66(4): 702-8, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21393163

RESUMEN

OBJECTIVES: HIV-1 reverse transcriptase (RT) mutations associated with antiviral drug resistance have been extensively characterized in the enzyme polymerase domain. Recent studies, however, have verified the involvement of the RT C-terminal domains (connection and RNase H) in drug resistance to RT inhibitors. In this work, we have characterized the correlation of recently described C-terminal domain mutations with thymidine analogue mutations (TAMs), as well as their phenotypic impact on susceptibility to zidovudine and nevirapine. METHODS: HIV-1 RT sequences from Brazilian patients and from public sequence databases for which the C-terminal RT domains and treatment status were also available were retrieved and analysed for the association of C-terminal mutations and the presence of TAMs and treatment status. Several C-terminal RT mutations previously characterized were introduced by site-directed mutagenesis into an HIV-1 subtype B molecular clone in a wild-type, TAM-1 or TAM-2 pathway context. Mutants were tested for drug susceptibility to the prototypic drugs zidovudine and nevirapine. RESULTS: Subtype B-infected patient database analysis showed that mutations N348I, A360V/T, T377M and D488E were found to be selected independently of TAMs, whereas mutations R358K, G359S, A371V, A400T, K451R and K512R increased in frequency with the number of TAMs in a dose-dependent fashion. Phenotypic analysis of C-terminal mutations showed that N348I, T369V and A371V conferred reduced susceptibility to zidovudine in the context of the TAM-1 and/or TAM-2 pathway, and also conferred dual resistance to nevirapine. Other mutations, such as D488E and Q547K, showed TAM-specific enhancement of resistance to zidovudine. Finally, mutation G359S displayed a zidovudine hypersusceptibility phenotype, both per se and when combined with A371V. CONCLUSIONS: This study demonstrates that distinct RT C-terminal mutations can act as primary or secondary drug resistance mutations, and are associated in a complex array of phenotypes with RT polymerase domain mutations.


Asunto(s)
Fármacos Anti-VIH/farmacología , Farmacorresistencia Viral , Transcriptasa Inversa del VIH/genética , VIH-1/efectos de los fármacos , Timidina/análogos & derivados , Sustitución de Aminoácidos , Brasil , Infecciones por VIH/virología , VIH-1/enzimología , VIH-1/aislamiento & purificación , Humanos , Pruebas de Sensibilidad Microbiana , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/genética , Mutación Missense , Nevirapina/farmacología , Estructura Terciaria de Proteína/genética , Timidina/farmacología , Zidovudina/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA