Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Clin Microbiol ; 52(7): 2521-9, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24808235

RESUMEN

The identification of organisms from positive blood cultures generally takes several days. However, recently developed rapid diagnostic methods offer the potential for organism identification within only a few hours of blood culture positivity. In this study, we evaluated the performance of three commercial methods to rapidly identify organisms directly from positive blood cultures: QuickFISH (AdvanDx, Wolburn, MA), Verigene Gram-Positive Blood Culture (BC-GP; Nanosphere, Northbrook, IL), and matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) with Sepsityper processing (Bruker Daltonics, Billerica, MA). A total of 159 blood cultures (VersaTREK Trek Diagnostic Systems, Cleveland, OH) positive for Gram-positive and Gram-negative bacteria as well as yeast were analyzed with QuickFISH and MALDI-TOF MS. In all, 102 blood cultures were analyzed using the BC-GP assay. For monomicrobial cultures, we observed 98.0% concordance with routine methods for both QuickFISH (143/146) and the BC-GP assay (93/95). MALDI-TOF MS demonstrated 80.1% (117/146) and 87.7% (128/146) concordance with routine methods to the genus and species levels, respectively. None of the methods tested were capable of consistently identifying polymicrobial cultures in their entirety or reliably differentiating Streptococcus pneumoniae from viridans streptococci. Nevertheless, the methods evaluated in this study are convenient and accurate for the most commonly encountered pathogens and have the potential to dramatically reduce turnaround time for the provision of results to the treating physician.


Asunto(s)
Bacterias/aislamiento & purificación , Sangre/microbiología , Pruebas Diagnósticas de Rutina/métodos , Técnicas Microbiológicas/métodos , Sepsis/diagnóstico , Sepsis/microbiología , Levaduras/aislamiento & purificación , Bacterias/clasificación , Humanos , Sensibilidad y Especificidad , Levaduras/clasificación
2.
Science ; 334(6058): 982-6, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-22096200

RESUMEN

Bacteria become highly tolerant to antibiotics when nutrients are limited. The inactivity of antibiotic targets caused by starvation-induced growth arrest is thought to be a key mechanism producing tolerance. Here we show that the antibiotic tolerance of nutrient-limited and biofilm Pseudomonas aeruginosa is mediated by active responses to starvation, rather than by the passive effects of growth arrest. The protective mechanism is controlled by the starvation-signaling stringent response (SR), and our experiments link SR-mediated tolerance to reduced levels of oxidant stress in bacterial cells. Furthermore, inactivating this protective mechanism sensitized biofilms by several orders of magnitude to four different classes of antibiotics and markedly enhanced the efficacy of antibiotic treatment in experimental infections.


Asunto(s)
Antibacterianos/farmacología , Biopelículas/efectos de los fármacos , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/fisiología , Animales , Antibacterianos/uso terapéutico , Biopelículas/crecimiento & desarrollo , Catalasa/metabolismo , Farmacorresistencia Bacteriana , Tolerancia a Medicamentos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Escherichia coli/fisiología , Femenino , Radical Hidroxilo/metabolismo , Hidroxiquinolinas/metabolismo , Ratones , Ratones Endogámicos C57BL , Mutación , Ofloxacino/farmacología , Ofloxacino/uso terapéutico , Estrés Oxidativo , Infecciones por Pseudomonas/tratamiento farmacológico , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Serina/análogos & derivados , Serina/farmacología , Superóxido Dismutasa/metabolismo
3.
Proc Natl Acad Sci U S A ; 106(34): 14570-5, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19706543

RESUMEN

This report describes the identification and analysis of a 2-component regulator of Pseudomonas aeruginosa that is a potential aminoglycoside antibiotic combination therapy target. The regulator, AmgRS, was identified in a screen of a comprehensive, defined transposon mutant library for functions whose inactivation increased tobramycin sensitivity. AmgRS mutations enhanced aminoglycoside action against bacteria grown planktonically and in antibiotic tolerant biofilms, against genetically resistant clinical isolates, and in lethal infections of mice. Drugs targeting AmgRS would thus be expected to enhance the clinical efficacy of aminoglycosides. Unexpectedly, the loss of AmgRS reduced virulence in the absence of antibiotics, indicating that its inactivation could protect against infection directly as well as by enhancing aminoglycoside action. Transcription profiling and phenotypic analysis suggested that AmgRS controls an adaptive response to membrane stress, which can be caused by aminoglycoside-induced translational misreading. These results help validate AmgRS as a potential antibiotic combination target for P. aeruginosa and indicate that fundamental stress responses may be a valuable general source of such targets.


Asunto(s)
Antibacterianos/farmacología , Mutación , Pseudomonas aeruginosa/efectos de los fármacos , Tobramicina/farmacología , Aminoglicósidos/farmacología , Animales , Elementos Transponibles de ADN/genética , Farmacorresistencia Bacteriana/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Ratones , Ratones Endogámicos C57BL , Pruebas de Sensibilidad Microbiana , Mutagénesis Insercional , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Virulencia/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA