Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; 41(5): 1745-1752, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-34996344

RESUMEN

Proteins from thermophilic organisms are a matter of immense interest for decades because of its application in fields like de-novo protein design, thermostable variants of biocatalysts etc. Previous studies have found several sequence and structural adaptations related to thermal stability, while charge reversal study remains ignored. Here we address whether charge reversal mutations naturally occur in mesophilic-thermophilic/hyperthermophilic orthologous proteins. Do they contribute to thermal stability? Our systematic study on 1550 mesophilic-thermophilic/hyperthermophilic orthologous protein pairs with remarkable structural and topological similarity, shows gain in coulombic interaction energy in thermophilic/hyperthermophilic proteins at short range associated with partially exposed and buried charge reversal mutations, which may enhance thermostability. Our findings call forth its application in future protein engineering studies. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Ingeniería de Proteínas , Proteínas , Proteínas/genética , Proteínas/química , Archaea , Mutación
2.
FEBS J ; 288(11): 3428-3447, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33319437

RESUMEN

Precise control of protein and messenger RNA (mRNA) degradation is essential for cellular metabolism and homeostasis. Controlled and specific degradation of both molecular species necessitates their engagements with the respective degradation machineries; this engagement involves a disordered/unstructured segment of the substrate traversing the degradation tunnel of the machinery and accessing the catalytic sites. However, while molecular factors influencing protein degradation have been extensively explored on a genome scale, and in multiple organisms, such a comprehensive understanding remains missing for mRNAs. Here, we analyzed multiple genome-scale experimental yeast mRNA half-life data in light of experimentally derived mRNA secondary structures and protein binding data, along with high-resolution X-ray crystallographic structures of the RNase machines. Results unraveled a consistent genome-scale trend that mRNAs comprising longer terminal and/or internal unstructured segments have significantly shorter half-lives; the lengths of the 5'-terminal, 3'-terminal, and internal unstructured segments that affect mRNA half-life are compatible with molecular structures of the 5' exo-, 3' exo-, and endoribonuclease machineries. Sequestration into ribonucleoprotein complexes elongates mRNA half-life, presumably by burying ribonuclease engagement sites under oligomeric interfaces. After gene duplication, differences in terminal unstructured lengths, proportions of internal unstructured segments, and oligomerization modes result in significantly altered half-lives of paralogous mRNAs. Side-by-side comparison of molecular principles underlying controlled protein and mRNA degradation in yeast unravels their remarkable mechanistic similarities and suggests how the intrinsic structural features of the two molecular species, at two different levels of the central dogma, regulate their half-lives on genome scale.


Asunto(s)
Endorribonucleasas/genética , Conformación de Ácido Nucleico , Estabilidad del ARN/genética , ARN Mensajero/ultraestructura , Endorribonucleasas/ultraestructura , Genoma Fúngico/genética , Semivida , Estructura Secundaria de Proteína/genética , ARN Mensajero/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/ultraestructura
3.
RNA Biol ; 17(9): 1331-1341, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32476560

RESUMEN

Regulation of protein synthesis is an essential step of gene expression. This process is under the control of cis-acting RNA elements and trans-acting factors. Gemin5 is a multifunctional RNA-binding protein organized in distinct domains. The protein bears a non-canonical RNA-binding site, designated RBS1, at the C-terminal end. Among other cellular RNAs, the RBS1 region recognizes a sequence located within the coding region of Gemin5 mRNA, termed H12. Expression of RBS1 stimulates translation of RNA reporters carrying the H12 sequence, counteracting the negative effect of Gemin5 on global protein synthesis. A computational analysis of RBS1 protein and H12 RNA variability across the evolutionary scale predicts coevolving pairs of amino acids and nucleotides. RBS1 footprint and gel-shift assays indicated a positive correlation between the identified coevolving pairs and RNA-protein interaction. The coevolving residues of RBS1 contribute to the recognition of stem-loop SL1, an RNA structural element of H12 that contains the coevolving nucleotides. Indeed, RBS1 proteins carrying substitutions on the coevolving residues P1297 or S1299S1300, drastically reduced SL1-binding. Unlike the wild type RBS1 protein, expression of these mutant proteins in cells failed to enhance translation stimulation of mRNA reporters carrying the H12 sequence. Therefore, the PXSS motif within the RBS1 domain of Gemin5 and the RNA structural motif SL1 of its mRNA appears to play a key role in fine-tuning the expression level of this essential protein.


Asunto(s)
Sitios de Unión , Motivos de Unión al ARN , Proteínas de Unión al ARN/química , ARN/química , Proteínas del Complejo SMN/química , Secuencia de Aminoácidos , Evolución Biológica , Secuencia Conservada , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
4.
Proteins ; 88(6): 788-808, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31872464

RESUMEN

Are there any generalized molecular principles of thermal adaptation? Here, integrating the concepts of structural bioinformatics, sequence analysis, and classical knot theory, we develop a robust computational framework that seeks for mechanisms of thermal adaptation by comparing orthologous mesophilic-thermophilic and mesophilic-hyperthermophilic proteins of remarkable structural and topological similarities, and still leads us to context-independent results. A comprehensive analysis of 4741 high-resolution, non-redundant X-ray crystallographic structures collected from 11 hyperthermophilic, 32 thermophilic and 53 mesophilic prokaryotes unravels at least five "nearly universal" signatures of thermal adaptation, irrespective of the enormous sequence, structure, and functional diversity of the proteins compared. A careful investigation further extracts a set of amino acid changes that can potentially enhance protein thermal stability, and remarkably, these mutations are overrepresented in protein crystallization experiments, in disorder-to-order transitions and in engineered thermostable variants of existing mesophilic proteins. These results could be helpful to find a precise, global picture of thermal adaptation.


Asunto(s)
Adaptación Fisiológica/genética , Archaea/química , Proteínas Arqueales/química , Bacterias/química , Proteínas Bacterianas/química , Archaea/fisiología , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Bacterias/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cristalografía por Rayos X , Minería de Datos , Conjuntos de Datos como Asunto , Calor , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Mutación , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Estabilidad Proteica , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad , Termodinámica
5.
Proteins ; 86(8): 827-832, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29679401

RESUMEN

Do coding and regulatory segments of a gene co-evolve with each-other? Seeking answers to this question, here we analyze the case of Escherichia coli ribosomal protein S15, that represses its own translation by specifically binding its messenger RNA (rpsO mRNA) and stabilizing a pseudoknot structure at the upstream untranslated region, thus trapping the ribosome into an incomplete translation initiation complex. In the absence of S15, ribosomal protein S1 recognizes rpsO and promotes translation by melting this very pseudoknot. We employ a robust statistical method to detect signatures of positive epistasis between residue site pairs and find that biophysical constraints of translational regulation (S15-rpsO and S1-rpsO recognition, S15-mediated rpsO structural rearrangement, and S1-mediated melting) are strong predictors of positive epistasis. Transforming the epistatic pairs into a network, we find that signatures of two different, but interconnected regulatory cascades are imprinted in the sequence-space and can be captured in terms of two dense network modules that are sparsely connected to each other. This network topology further reflects a general principle of how functionally coupled components of biological networks are interconnected. These results depict a model case, where translational regulation drives characteristic residue-level epistasis-not only between a protein and its own mRNA but also between a protein and the mRNA of an entirely different protein.


Asunto(s)
Epistasis Genética , ARN Mensajero/genética , Proteínas Ribosómicas/metabolismo , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos , Conformación de Ácido Nucleico , Regiones Operadoras Genéticas , Ribosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA