Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Glob Chang Biol ; 27(20): 5109-5123, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34165851

RESUMEN

Inland waters play an active role in the global carbon cycle and emit large volumes of the greenhouse gases (GHGs), methane (CH4 ) and carbon dioxide (CO2 ). A considerable body of research has improved emissions estimates from lakes, reservoirs and rivers but recent attention has been drawn to the importance of small, artificial waterbodies as poorly quantified but potentially important emission hotspots. Of particular interest are emissions from drainage ditches and constructed ponds. These waterbody types are prevalent in many landscapes and their cumulative surface areas can be substantial. Furthermore, GHG emissions from constructed waterbodies are anthropogenic in origin and form part of national emissions reporting, whereas emissions from natural waterbodies do not (according to Intergovernmental Panel on Climate Change guidelines). Here, we present GHG data from two complementary studies covering a range of land uses. In the first, we measured emissions from nine ponds and seven ditches over a full year. Annual emissions varied considerably: 0.1-44.3 g CH4  m-2  year-1 and -36-4421 g CO2  m-2  year-1 . In the second, we measured GHG concentrations in 96 ponds and 64 ditches across seven countries, covering subtropical, temperate and sub-arctic biomes. When CH4 emissions were converted to CO2  equivalents, 93% of waterbodies were GHG sources. In both studies, GHGs were positively related to nutrient status (C, N, P), and pond GHG concentrations were highest in smallest waterbodies. Ditch and pond emissions were larger per unit area when compared to equivalent natural systems (streams, natural ponds). We show that GHG emissions from natural systems should not be used as proxies for those from artificial waterbodies, and that artificial waterbodies have the potential to make a substantial but largely unquantified contribution to emissions from the Agriculture, Forestry and Other Land Use sector, and the global carbon cycle.


Asunto(s)
Dióxido de Carbono , Gases de Efecto Invernadero , Dióxido de Carbono/análisis , Efecto Invernadero , Gases de Efecto Invernadero/análisis , Lagos , Metano/análisis , Óxido Nitroso/análisis , Ríos
2.
Sci Rep ; 10(1): 12465, 2020 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-32719313

RESUMEN

Methane (CH4) is emitted from lakes by several processes: bubbles released from bottom sediments that reach the atmosphere (ebullition); spring release of CH4 trapped in bubbles in and under the ice during fall freeze (bubble release), and diffusion of CH4 from sediments to the surface. Each of these emission routes is highly variable over space and time, and episodic in the extreme, making reliable measurements difficult to carry out. However, lakes are receiving increasing interest for their important contribution to global CH4 emissions. Their area, distribution and emissions respond to interannual and longer-term climate fluctuations and close to half the world's lake area is in high northern latitudes that are experiencing rapidly-warming temperatures and lengthening thaw periods. We report on a new spatially-explicit data set of lakes > 50°N, classified with methane-relevant criteria. The seasonality of daily CH4 fluxes is driven with satellite observations of thaw timing and duration. We found that observed thaw seasons are 10-30% shorter than those assumed in previous studies. The area of lakes is 1,095 × 103 km2 and total CH4 emission is 13.8-17.7 Tg CH4 year-1: 11.2-14.4 Tg via diffusion and ebullition and 2.6-3.3 Tg from spring release of CH4 stored in bubbles in winter lake ice. This novel suite of data and methodologies provides a unique framework to model CH4 emission from lakes under current, past and future climates.

3.
Sci Rep ; 5: 14248, 2015 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-26370519

RESUMEN

Lakes play an important role in the global carbon (C) cycle by burying C in sediments and emitting CO2 and CH4 to the atmosphere. The strengths and control of these fundamentally different pathways are therefore of interest when assessing the continental C balance and its response to environmental change. In this study, based on new high-resolution estimates in combination with literature data, we show that annual emission:burial ratios are generally ten times higher in boreal compared to subarctic - arctic lakes. These results suggest major differences in lake C cycling between biomes, as lakes in warmer boreal regions emit more and store relatively less C than lakes in colder arctic regions. Such effects are of major importance for understanding climatic feedbacks on the continental C sink - source function at high latitudes. If predictions of global warming and northward expansion of the boreal biome are correct, it is likely that increasing C emissions from high latitude lakes will partly counteract the presumed increasing terrestrial C sink capacity at high latitudes.


Asunto(s)
Ciclo del Carbono , Carbono , Ecosistema , Lagos , Regiones Árticas
4.
Microb Ecol ; 46(1): 73-82, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12739075

RESUMEN

Based on work in marine sediments it can be hypothesized that (i) overall OM mineralization depends on the enzymatic capacity and is largely independent from the energy yield, (ii) similar oxic and anoxic rates are expected for fresh OM, while oxic rates should be faster for old OM that is partially degraded or adsorbed to particles, and (iii) that the thermodynamic energy yield does not regulate mineralization, but primarily determines the energy fraction allocated to bacterial production (BP). We addressed these hypotheses by simultaneous measurements of mineralization rates (MR) and BP in sediments from a eutrophic lake, along with MR measurements in sediments of a dystrophic lake. Anoxic MR were 44 and 78% of oxic MR in the eutrophic and dystrophic lake, respectively, which was always higher than expected given the theoretical energy yields. The BP:MR ratio was 0.94 and 0.24 in the oxic and anoxic treatments, respectively, in accordance with the expected energy yields. Thus, the results support all three hypotheses above. We also critically discuss BP measurements in sediments and suggest that bacterial growth efficiency values from simultaneous MR and BP measurements can be used to evaluate the reliability of BP estimates.


Asunto(s)
Fenómenos Fisiológicos Bacterianos , Sedimentos Geológicos/análisis , Sedimentos Geológicos/microbiología , Compuestos Orgánicos/química , Oxígeno/química , Agua Dulce , Concentración de Iones de Hidrógeno , Leucina/metabolismo , Metano/metabolismo , Suecia , Tritio
5.
Appl Environ Microbiol ; 67(7): 2916-21, 2001 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-11425702

RESUMEN

Bacterial biomass production is often estimated from incorporation of radioactively labeled leucine into protein, in both oxic and anoxic waters and sediments. However, the validity of the method in anoxic environments has so far not been tested. We compared the leucine incorporation of bacterial assemblages growing in oxic and anoxic waters from three lakes differing in nutrient and humic contents. The method was modified to avoid O(2) contamination by performing the incubation in syringes. Isotope saturation levels in oxic and anoxic waters were determined, and leucine incorporation rates were compared to microscopically observed bacterial growth. Finally, we evaluated the effects of O(2) contamination during incubation with leucine, as well as the potential effects of a headspace in the incubation vessel. Isotope saturation occurred at a leucine concentration of above about 50 nM in both oxic and anoxic waters from all three lakes. Leucine incorporation rates were linearly correlated to observed growth, and there was no significant difference between oxic and anoxic conditions. O(2) contamination of anoxic water during 1-h incubations with leucine had no detectable impact on the incorporation rate, while a headspace in the incubation vessel caused leucine incorporation to increase in both anoxic and O(2)-contaminated samples. The results indicate that the leucine incorporation method relates equally to bacterial growth rates under oxic and anoxic conditions and that incubation should be performed without a headspace.


Asunto(s)
Bacterias/crecimiento & desarrollo , Agua Dulce/microbiología , Leucina/metabolismo , Oxígeno/farmacología , Anaerobiosis , Biomasa , Medios de Cultivo , Tritio/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA