Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Asunto principal
Intervalo de año de publicación
1.
Plants (Basel) ; 13(8)2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38674522

RESUMEN

Zymoseptoria tritici (Z. tritici) is the main threat to global food security; it is a fungal disease that presents one of the most serious threats to wheat crops, causing severe yield losses worldwide, including in Kazakhstan. The pathogen leads to crop losses reaching from 15 to 50%. The objectives of this study were to (1) evaluate a wheat collection for Z. tritici resistance during the adult plant and seedling growth stages, (2) identify the sources of resistance genes that provide resistance to Z. tritici using molecular markers linked to Stb genes, and (3) identify potentially useful resistant wheat genotypes among cultivars and advanced breeding lines. This study evaluated 60 winter and spring wheat genotypes for Z. tritici resistance. According to the field reactions, 22 entries (35.7%) showed ≤10% disease severity in both years. The resistant reaction to a mix of Z. tritici isolates in the seedling stage was associated with adult plant resistance to disease in four wheat entries. The resistance of Rosinka 3 was due to the presence of Stb8; Omskaya 18 showed an immune reaction in the field and a moderately susceptible reaction in the seedling stage, possibly provided by a combination of the Stb7 and Stb2 genes. The high resistance in both the adult and seedling stages of Omskaya 29 and KR11-03 was due to the Stb4 and Stb2 genes and, possibly, due to the presence of unknown genes. A linked marker analysis revealed the presence of several Stb genes. The proportion of wheat entries with Stb genes was quite high at twenty-seven of the genotypes tested (45.0%), including four from Kazakhstan, nine from Russia, nine from the CIMMYT-ICARDA-IWWIP program, and five from the CIMMYT-SEPTMON nursery. Among the sixty entries, ten (16.7%) carried the resistance genes Stb2 and Stb8, and the gene Stb4 was found in seven cultivars (11.6%). Marker-assisted selection can be efficiently applied to develop wheat cultivars with effective Stb gene combinations that would directly assist in developing durable resistance in Kazakhstan. Resistant genotypes could also be used as improved parents in crossing programs to develop new wheat cultivars.

2.
Biomolecules ; 13(12)2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38136593

RESUMEN

Genetic diversity and marker-trait association with yield-related components were assessed in 39 chickpea accessions from a germplasm collection with either spring or autumn-sown seeds in South-Eastern Kazakhstan. Chickpea accessions originated from Azerbaijan, Germany, Kazakhstan, Moldova, Russia, Türkiye, Ukraine, Syria, and the International Center for Agricultural Research in the Dry Areas (ICARDA). Eleven SSR markers were used for molecular genotyping. Yield and yield components were evaluated in nine traits in experiments with spring and autumn seed sowing. The number of alleles of polymorphic markers varied from 2 to 11. The greatest polymorphism was found in the studied chickpea genotypes using SSR marker TA22 (11 alleles), while NCPGR6 and NCPGR12 markers were monomorphic. In the studied chickpea accessions, unique alleles of the SSR loci TA14, TA46, TA76s, and TA142 were found that were not previously described by other authors. An analysis of correlation relationships between yield-related traits in chickpea revealed the dependence of yield on plant height, branching, and the setting of a large number of beans. These traits showed maximal values in experiments with chickpea plants from autumn seed sowing. An analysis of the relationship between the SSR markers applied and morphological yield-related traits revealed several informative markers associated with important traits, such as plant height, height to first pod, number of branches, number of productive nodes, number of pods per plant, hundred seed weight, seed weight per plant, and seed yield.


Asunto(s)
Cicer , Cicer/genética , Genotipo , Fenotipo , Biomarcadores , Alemania
3.
PeerJ ; 6: e5127, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29967753

RESUMEN

BACKGROUND: The pathogens from Fusarium species can cause Fusarium root rot (RR) and other diseases in plant species including sugar beet (Beta vulgaris L.), and they have a strong negative impact on sugar beet yield and quality. METHODS: A total of 22 sugar beet breeding lines were evaluated for the symptoms of RR after inoculation with Fusarium oxysporum Sch., isolate No. 5, and growth in a field trial. Two candidate genes for RR resistance, BvSP2 and BvSE2, encoding chitinases Class IV and III, respectively, were previously identified in sugar beet, and used for genotyping using modern Amplifluor-like single nucleotide polymorphism (SNP) genotyping approach. The qPCR expression analysis was used to verify responses of the candidate genes for RR infections. RESULTS: A strong association of two SNP markers for BvSP2 and BvSE2 with resistance to RR in sugar beet was found in our study. Very high BvSP2 expression (100-fold compared to Controls) was observed in three RR resistant accessions (2182, 2236 and KWS2320) 14 days after inoculation which returned to the control level on Day 18. RR sensitive breeding line 2210 showed a delay in mRNA level, reaching maximal expression of BvSP2 18 days after inoculation. The gene BvSE2, showed a strong expression level in leaf samples from the infected field trial only in the breeding line 2236, which showed symptoms of RR, and this may be a response to other strains of F. oxysporum.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA