Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 71: 1-9, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28259023

RESUMEN

Direct Metal Laser Sintering (DMLS) technology was used to produce tensile and flexural samples based on the Ti-6Al-4V biomedical composition. Tensile samples were produced in three different orientations in order to investigate the effect of building direction on the mechanical behavior. On the other hand, flexural samples were submitted to thermal treatments to simulate the firing cycle commonly used to veneer metallic devices with ceramics in dental applications. Roughness and hardness measurements as well as tensile and flexural mechanical tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate sample microstructure. Results evidenced a difference in the mechanical response of tensile samples built in orthogonal directions. In terms of microstructure, samples not submitted to the firing cycle show a single phase acicular α' (hcp) structure typical of metal parts subject to high cooling rates. After the firing cycle, samples show a reduction of hardness and strength due to the formation of laths of the ß (bcc) phase at the boundaries of the primary formed α' plates as well as to lattice parameters variation of the hcp phase. Element partitioning during the firing cycle gives rise to high concentration of V atoms (up to 20wt%) at the plate boundaries where the ß phase preferentially forms.


Asunto(s)
Rayos Láser , Ensayo de Materiales , Titanio/análisis , Aleaciones , Resistencia a la Tracción , Difracción de Rayos X
2.
J Mech Behav Biomed Mater ; 60: 106-117, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26803005

RESUMEN

Direct Metal Laser Sintering (DMLS) technology based on a layer by layer production process was used to produce a Co-Cr-Mo-W alloy specifically developed for biomedical applications. The alloy mechanical response and microstructure were investigated in the as-sintered state and after post-production thermal treatments. Roughness and hardness measurements, and tensile and flexural tests were performed to study the mechanical response of the alloy while X-ray diffraction (XRD), electron microscopy (SEM, TEM, STEM) techniques and microanalysis (EDX) were used to investigate the microstructure in different conditions. Results showed an intricate network of ε-Co (hcp) lamellae in the γ-Co (fcc) matrix responsible of the high UTS and hardness values in the as-sintered state. Thermal treatments increase volume fraction of the ε-Co (hcp) martensite but slightly modify the average size of the lamellar structure. Nevertheless, thermal treatments are capable of producing a sensible increase in UTS and hardness and a strong reduction in ductility. These latter effects were mainly attributed to the massive precipitation of an hcp Co3(Mo,W)2Si phase and the contemporary formation of Si-rich inclusions.


Asunto(s)
Aleaciones , Materiales Biocompatibles , Calor , Rayos Láser , Cromo , Cobalto , Dureza , Molibdeno , Resistencia a la Tracción , Tungsteno , Difracción de Rayos X
3.
Mater Sci Eng C Mater Biol Appl ; 48: 263-9, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25579922

RESUMEN

Direct metal laser sintering (DMLS) is a technique to manufacture complex functional mechanical parts from a computer-aided design (CAD) model. Usually, the mechanical components produced by this procedure show higher residual porosity and poorer mechanical properties than those obtained by conventional manufacturing techniques. In this work, a Co-Cr-Mo alloy produced by DMLS with a composition suitable for biomedical applications was submitted to hardness measurements and structural characterization. The alloy showed a hardness value remarkably higher than those commonly obtained for the same cast or wrought alloys. In order to clarify the origin of this unexpected result, the sample microstructure was investigated by X-ray diffraction (XRD), electron microscopy (SEM and TEM) and energy dispersive microanalysis (EDX). For the first time, a homogeneous microstructure comprised of an intricate network of thin ε (hcp)-lamellae distributed inside a γ (fcc) phase was observed. The ε-lamellae grown on the {111}γ planes limit the dislocation slip inside the γ (fcc) phase, causing the measured hardness increase. The results suggest possible innovative applications of the DMLS technique to the production of mechanical parts in the medical and dental fields.


Asunto(s)
Aleaciones de Cromo/química , Cobalto/química , Tecnología/métodos , Dureza , Rayos Láser , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Molibdeno/química , Difracción de Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA