RESUMEN
BACKGROUND: Prevalence of hepatocellular carcinoma (HCC) is increasing, especially in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). AIM: To investigate rifaximin (RIF) effects on epigenetic/autophagy markers in animals. METHODS: Adult Sprague-Dawley rats were randomly assigned (n = 8, each) and treated from 5-16 wk: Control [standard diet, water plus gavage with vehicle (Veh)], HCC [high-fat choline deficient diet (HFCD), diethylnitrosamine (DEN) in drinking water and Veh gavage], and RIF [HFCD, DEN and RIF (50 mg/kg/d) gavage]. Gene expression of epigenetic/autophagy markers and circulating miRNAs were obtained. RESULTS: All HCC and RIF animals developed metabolic-dysfunction associated steatohepatitis fibrosis, and cirrhosis, but three RIF-group did not develop HCC. Comparing animals who developed HCC with those who did not, miR-122, miR-34a, tubulin alpha-1c (Tuba-1c), metalloproteinases-2 (Mmp2), and metalloproteinases-9 (Mmp9) were significantly higher in the HCC-group. The opposite occurred with Becn1, coactivator associated arginine methyltransferase-1 (Carm1), enhancer of zeste homolog-2 (Ezh2), autophagy-related factor LC3A/B (Map1 Lc3b), and p62/sequestosome-1 (p62/SQSTM1)-protein. Comparing with controls, Map1 Lc3b, Becn1 and Ezh2 were lower in HCC and RIF-groups (P < 0.05). Carm1 was lower in HCC compared to RIF (P < 0.05). Hepatic expression of Mmp9 was higher in HCC in relation to the control; the opposite was observed for p62/Sqstm1 (P < 0.05). Expression of p62/SQSTM1 protein was lower in the RIF-group compared to the control (P = 0.024). There was no difference among groups for Tuba-1c, Aldolase-B, alpha-fetoprotein, and Mmp2 (P > 0.05). miR-122 was higher in HCC, and miR-34a in RIF compared to controls (P < 0.05). miR-26b was lower in HCC compared to RIF, and the inverse was observed for miR-224 (P < 0.05). There was no difference among groups regarding miR-33a, miR-143, miR-155, miR-375 and miR-21 (P > 0.05). CONCLUSION: RIF might have a possible beneficial effect on preventing/delaying liver carcinogenesis through epigenetic modulation in a rat model of MASLD-HCC.
RESUMEN
Baccharis anomala DC. (BA) is a plant species found in the tropical regions of South America and is widely used for its hepatoprotective effects, as well as for the treatment of gastrointestinal diseases. Studies have recently reported its antioxidant and anti-inflammatory potential. BA extract can reverse the activated phenotype of hepatic stellate cells (HSC), which plays a central role in extracellular matrix (ECM) deposition in the development of liver fibrosis. Thus, this study aimed to evaluate the effects of the treatment with BA extract on liver fibrosis in a CCl4-induced liver fibrosis model in BALB/c mice. Methanolic extract was obtained from BA leaves, a gas chromatography/mass spectrometry (GC/MS) to detect the compounds present was performed, and then administered by intraperitoneal injection in Balb/C mice at a concentration of 50 and 100 mg/kg together with the administration of CCl4 for inducing liver fibrosis. After 10 weeks, blood analysis, histopathology, oxidative stress, as well as protein and gene expression in the hepatic tissue were performed. Treatment with BA extract was able to reduce profibrotic markers by reducing the expression of α-SMA and Col-1 proteins, as well as reducing the formation of free radicals and lipid peroxidation. (BA extract showed anti-inflammatory effects in the liver by suppressing NF-kB activation and reducing gene expression of signaling targets (IL-6 and iNOS). The data obtained showed that BA extract has antifibrotic and anti-inflammatory effects.
Asunto(s)
Baccharis , FN-kappa B , Ratones , Animales , FN-kappa B/metabolismo , Baccharis/metabolismo , Cirrosis Hepática/inducido químicamente , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/patología , Hígado , Inflamación/metabolismo , Matriz Extracelular/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéuticoRESUMEN
In pulmonary fibrosis, the proliferation of fibroblasts and their differentiation into myofibroblasts is often caused by tissue damage, such as oxidative damage caused by reactive oxygen species, which leads to progressive rupture and thus destruction of the alveolar architecture, resulting in cell proliferation and tissue remodeling. Bezafibrate (BZF) is an important member of the peroxisome proliferator-activated receptor (PPARs) family agonists, used in clinical practice as antihyperlipidemic. However, the antifibrotic effects of BZF are still poorly studied. The objective of this study was to evaluate the effects of BZF on pulmonary oxidative damage in lung fibroblast cells. MRC-5 cells were treated with hydrogen peroxide (H2O2) to induce oxidative stress activation and BZF treatment was administered at the same moment as H2O2 induction. The outcomes evaluated were cell proliferation and cell viability; oxidative stress markers such as reactive oxygen species (ROS), catalase (CAT) levels and thiobarbituric acid reactive substances (TBARS); col-1 and α-SMA mRNA expression and cellular elasticity through Young's modulus analysis evaluated by atomic force microscopy (AFM). The H2O2-induced oxidative damage decreased the cell viability and increased ROS levels and decreased CAT activity in MRC-5 cells. The expression of α-SMA and the cell stiffness increased in response to H2O2 treatment. Treatment with BZF decreased the MRC-5 cell proliferation, ROS levels, reestablished CAT levels, decreased the mRNA expression of type I collagen protein (col-1) and α-smooth muscle actin (α-SMA), and cellular elasticity even with H2O2 induction. Our results suggest that BZF has a potential protective effect on H2O2-induced oxidative stress. These results are based on an in vitro experiment, derived from a fetal lung cell line and may emerge as a possible new therapy for the treatment of pulmonary fibrosis.
Asunto(s)
Peróxido de Hidrógeno , Fibrosis Pulmonar , Humanos , Peróxido de Hidrógeno/toxicidad , Peróxido de Hidrógeno/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Bezafibrato/farmacología , Bezafibrato/metabolismo , Fibrosis Pulmonar/patología , Pulmón/metabolismo , Estrés Oxidativo , Fibroblastos , ARN Mensajero/metabolismoRESUMEN
Acute lung injury (ALI) is a disease of high prevalence and is characterized by the excessive production of inflammatory mediators in the lungs of people sick. Inflammation is the major characteristic of ALI and studies report that inhibition of inflammatory cytokines could be an alternative treatment. Statins such as Simvastatin (SV) are known to their use for cholesterol reduction but also for inflammatory and immunoregulatory processes. In this study, we evaluated the effects of SV on LPS-induced alveolar macrophages and in ALI mice model. Our study has demonstrated the protective effects of SV on LPS-activated alveolar macrophages RAW 264.7 and LPS-induced ALI in mice. SV treatment significantly inhibited the alveolar macrophages activation by decreasing the iNOS, IL-1ß, and IL-6 gene expression in vitro and in vivo. The treatment also decreased the inflammatory cells migration and the cytokines gene expression. Our findings suggest that SV can act as an anti-inflammatory agent for acute lung injury.
Asunto(s)
Lesión Pulmonar Aguda , Lipopolisacáridos , Animales , Ratones , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Simvastatina/efectos adversos , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/metabolismo , Citocinas/metabolismoRESUMEN
Acute lung injury (ALI) is a life-threatening acute inflammatory disease with high rates of morbidity and mortality worldwide. 4-Allyl-2,6-dimethoxyphenol (methoxyeugenol), a phenylpropanoid from a synthetic source, exhibits strong anti-inflammatory activity, but its effects on the inflammation of ALI have not yet been reported. In our study, the anti-inflammatory effects of methoxyeugenol were investigated on RAW 264.7 cells and a mice model of ALI. Our results showed that methoxyeugenol (7.5 and 30 µM) attenuated the proliferation and gene expression of interleukin (IL)-6 in LPS-stimulated RAW 264.7 cells. In a mice model of ALI induced with LPS, methoxyeugenol exhibited a significant protective effect, based on influx reduction of macrophages and neutrophils into the lungs; reduction in release of the cytokines IL-6, TNF-α, and IL-10; and in reactive oxygen species (ROS) formation. We show that the anti-inflammatory effects of methoxyeugenol are associated with the suppression of the NFκB signaling pathway. Moreover, we demonstrated for the first time that a phenolic compound, from a synthetic source, protects against lung tissue inflammation and promotes a reduction of NET formation. These findings provided evidence for the use of methoxyeugenol as a new strategy to control inflammation in ALI disease.
Asunto(s)
Lesión Pulmonar Aguda , Trampas Extracelulares , Neumonía , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Animales , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Modelos Animales de Enfermedad , Trampas Extracelulares/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/prevención & control , Interleucina-6/metabolismo , Lipopolisacáridos/farmacología , Pulmón/metabolismo , Ratones , Ratones Endogámicos C57BL , Neumonía/metabolismoRESUMEN
Octyl gallate (OG) is an antioxidant commonly used in food, although there is no definition of its acceptable daily intake. There are reports in vitro and in vivo showing that food additives and drugs can alter lipid metabolism. Lipid droplet accumulation in hepatic cells is one of the main findings in the unregulated lipid metabolism and is strongly related to the development of nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the effects of OG on lipid metabolism in the hepatocellular carcinoma cell line (HepG2). The results have shown, for the first time, that treatment with OG increased the overall amount of lipids, the triglyceride concentration, the lipid droplet area, and SREBP-1c and PPAR-γ gene expression. Taken together, the findings indicate that OG induces lipid droplet accumulation in HepG2 cells through the regulation of SREBP-1c and PPAR-γ gene expression without involving mTOR/S6K1 and may contribute to NAFLD when used as a food additive.
RESUMEN
Hepatocellular carcinoma (HCC) is the most prevalent type of tumor among primary liver tumors and is the second highest cause of cancer-related deaths worldwide. Current therapies are controversial, and more research is needed to identify effective treatments. A new synthetic compound, potassium 5-cyano-4-methyl-6-oxo-1,6-dihydropyridine-2-olate (CPBMF65), is a potent inhibitor of the human uridine phosphorylase-1 (hUP1) enzyme, which controls the cell concentration of uridine (Urd). Urd is a natural pyrimidine nucleoside involved in cellular processes, such as RNA synthesis. In addition, it is considered a promising biochemical modulator, as it may reduce the toxicity caused by chemotherapeutics without impairing its anti-tumor activity. Thus, the objective of this study is to evaluate the effects of CPBMF65 on the proliferation of the human hepatocellular carcinoma cell line (HepG2). Cell proliferation, cytotoxicity, apoptosis, senescence, autophagy, intracellular Urd levels, cell cycle arrest, and drug resistance were analyzed. Results demonstrate that, after incubation with CPBMF65, HepG2 cell proliferation decreased, mainly through cell cycle arrest and senescence, increasing the levels of intracellular Urd and maintaining cell proliferation reduced during chronic treatment. In conclusion, results show, for the first time, the ability of a hUP1 inhibitor (CPBMF65) to reduce HepG2 cell proliferation through cell cycle arrest and senescence.
Asunto(s)
Antineoplásicos/farmacología , Carcinoma Hepatocelular/tratamiento farmacológico , Proliferación Celular/efectos de los fármacos , Neoplasias Hepáticas/tratamiento farmacológico , Piridinas/farmacología , Uridina Fosforilasa/antagonistas & inhibidores , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Cisplatino/farmacología , Resistencia a Antineoplásicos , Células Hep G2 , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Uridina/farmacologíaRESUMEN
Acute lung injury (ALI) is an inflammatory process, and has high incidence and mortality. ALI and the acute respiratory distress syndrome are two common complications worldwide that result in acute lung failure, sepsis, and death. Pro-inflammatory substances, such as cytokines and chemokines, are responsible for activating the body's defense mechanisms and usually mediate inflammatory processes. Therefore, the research of substances that decrease the uncontrolled response of organism is seen as potential for patients with ALI. Octyl gallate (OG) is a phenolic compound with therapeutic actions namely antimicrobial, antiviral, and antifungal. In this study, we evaluated its action on lipopolysaccharide (LPS)-activated alveolar macrophages RAW 264.7 cells and ALI in male mice. Our results demonstrated protective effects of OG in alveolar macrophages activated with LPS and mice with ALI. The OG treatment significantly decreased the inflammatory markers in both studies in vitro and in vivo. The data suggested that OG can act as an anti-inflammatory agent for ALI.
Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Ácido Gálico/análogos & derivados , Inflamación/tratamiento farmacológico , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Animales , Modelos Animales de Enfermedad , Ácido Gálico/farmacología , Humanos , Inflamación/patología , Pulmón/efectos de los fármacos , Pulmón/patología , Lesión Pulmonar/genética , Lesión Pulmonar/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/patología , Ratones , Estrés Oxidativo/efectos de los fármacos , Células RAW 264.7RESUMEN
The therapeutic potential of Baccharis anomala DC. extracts was evaluated through its cytotoxic and antiproliferative effect and their phenotypic reversion property in activated hepatic stellate cells (HSCs). Baccharis anomala is distributed in Brazil (southeastern and south regions) and used for diuretic effect in folk medicine. Four fractions were obtained from the fractionation of the methanolic extract. Fractions III and IV decreased cell proliferation without increasing cell necrosis markers levels and induced cell cycle arrest in G1 phase. Fraction III induced phenotypic reversion through PPAR-γ activation pathway, while fraction IV did not alter PPAR-α/γ expression levels, suggesting that there is an independent PPAR-α/γ pathway involved. Hydroxybenzoic, chlorogenic and coumaric acids were identified. Fractions III and IV showed antiproliferative effect and ability to induce reversion of activated phenotype of HSCs.
RESUMEN
Systematic monitoring of pasture quantity and quality is important to match the herd forage demand (pasture removal by grazing or harvest) to the supply of forage with adequate nutritive value. The aim of this research was to monitor, assess and manage changes in pasture growth, morphology and digestibility by integrating information from an Unmanned Aerial Vehicle (UAV) and two process-based models. The first model, Systems Approach to Land Use Sustainability (SALUS), is a process-based crop growth model used to predict pasture regrowth based on soil, climate, and management data. The second model, Morphogenetic and Digestibility of Pasture (MDP), uses paddock-scale values of herbage mass as input to predict leaf morphogenesis and forage nutritive value. Two field experiments were carried out on tall fescue- and ryegrass-based pastures under rotational grazing with lactating dairy cattle. The first experiment was conducted at plot scale and was used to calibrate the UAV and to test models. The second experiment was conducted at field scale and was used to test the UAV's ability to predict pasture biomass under grazing rotation. The Normalized Difference Vegetation Index (NDVI) calculated from the UAV's multispectral reflectance (n = 72) was strongly correlated (p < 0.001) to plot measurements of pasture biomass (R2 = 0.80) within the range of ~226 and 4208 kg DM ha-1. Moreover, there was no difference (root mean square error, RMSE < 500 kg DM ha-1) between biomass estimations by the UAV (1971±350 kg ha-1) and two conventional methods used as control, the C-Dax proximal sensor (2073±636 kg ha-1) and ruler (2017±530 kg ha-1). The UAV approach was capable of mapping at high resolution (6 cm) the spatial variability of pasture (16 ha). The integrated UAV-modeling approach properly predicted spatial and temporal changes in pasture biomass (RMSE = 509 kg DM ha-1, CCC = 0.94), leaf length (RMSE = 6.2 cm, CCC = 0.62), leaf stage (RMSE = 0.7 leaves, CCC = 0.65), neutral detergent fiber (RMSE = 3%, CCC = 0.71), digestibility of neutral detergent fiber (RMSE = 8%, CCC = 0.92) and digestibility of dry matter (RMSE = 5%, CCC = 0.93) with reasonable precision and accuracy. These findings therefore suggest potential for the present UAV-modeling approach for use as decision support tool to allocate animals based on spatially and temporally explicit predictions of pasture biomass and nutritive value.
Asunto(s)
Aeronaves , Crianza de Animales Domésticos , Bovinos , Industria Lechera , Granjas , Herbivoria , Lolium , Crianza de Animales Domésticos/instrumentación , Crianza de Animales Domésticos/métodos , Animales , Industria Lechera/instrumentación , Industria Lechera/métodosRESUMEN
The present study aimed to evaluate the effect of low-intensity pulsed ultrasound (LIPUS) on pre-osteoblast mineralization using in vitro bioassays. Pre-osteoblastic MC3T3-E1 cells were exposed to LIPUS at 1â¯MHz frequency, 0.2â¯W/cm2 intensity and 20% duty cycle for 30â¯min. The analyses were carried out up to 336â¯h (14â¯days) after exposure. The concentration of collagen, phosphate, alkaline phosphatase, calcium and transforming growth factor beta 1 (TGF-ß1) in cell supernatant and the presence of calcium deposits in the cells were analyzed. Our results showed that LIPUS promotes mineralized nodules formation. Collagen, phosphate, and calcium levels were decreased in cell supernatant at 192â¯h after LIPUS exposure. However, alkaline phosphatase and TGF-ß1 concentrations remained unchanged. Therapeutic pulsed ultrasound is capable of stimulating differentiation and mineralization of pre-osteoblastic MC3T3-E1 cells by calcium and phosphate uptake with consequent hydroxyapatite formation.
Asunto(s)
Calcio/metabolismo , Colágeno/metabolismo , Durapatita/metabolismo , Osteoblastos/citología , Osteoblastos/metabolismo , Fosfatos/metabolismo , Ondas Ultrasónicas , Células 3T3 , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular , Línea Celular , Técnicas In Vitro , Ratones , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Leucine (Leu) is an essential branched-chain amino acid, present in dairy products, which has been investigated for its important role in cell signaling. The effects of Leu on several kinds of cells have been studied, altough little is known on its action upon bone cells and cell proliferation. Thus, the aim of this study is to investigate the effects of Leu supplementation on the proliferation of pre-osteoblasts from MC3T3-E1 lineage. MC3T3-E1 cells were kept in Alpha medium supplemented with 10% fetal bovine serum and 1% antibiotic-antimitotic. Cells were treated during 48h by adding 50µM of Leu, which corresponds to a 12.5% increase of the amino acid in the culture medium. The evaluation of viability and proliferation of cultured cells was performed using Trypan Blue dye. In order to identify the mechanisms related to the decreased cellular proliferation, assays were performed to assess cytotoxicity, apotosis, oxidative stress, inflammation, autophagy, senescence and DNA damage. Results showed that Leu supplementation decreased cell proliferation by 40% through mechanisms not related to cell necrosis, apoptosis, oxidative stress, autophagy or inhibition of the mTORC1 pathway. On the other hand, Leu supplementation caused DNA damage. In conclusion, Leu caused a negative impact on bone cell proliferation by inducing cell senescence through DNA damage.
Asunto(s)
Senescencia Celular/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Leucina/farmacología , Células 3T3 , Animales , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quimiocina CCL2/metabolismo , Inflamación/inducido químicamente , Inflamación/patología , Ratones , Osteoblastos/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Factor de Crecimiento Transformador beta1/análisis , Factor de Crecimiento Transformador beta1/biosíntesisRESUMEN
Hepatic fibrosis is an extracellular matrix deposition by hepatic stellate cells (HSC). Fibrosis can be caused by iron, which will lead to hydroxyl radical production and cell damage. Fructose-1,6-bisphosphate (FBP) has been shown to deliver therapeutic effects in many pathological situations. In this work, we aimed to test the effects of FBP in HSC cell line, GRX, exposed to an excess of iron (Fe). The Fe-treatment increased cell proliferation and FBP reversed this effect, which was not due to increased necrosis, apoptosis or changes in cell cycle. Oil Red-O staining showed that FBP successfully increased lipid content and lead GRX cells to present characteristics of quiescent HSC. Fe-treatment decreased PPAR-γ expression and increased Col-1 expression. Both effects were reversed by FBP which also decreased TGF-ß1 levels in comparison to both control and Fe groups. FBP, also, did not present scavenger activity in the DPPH assay. The treatment with FBP resulted in decreased proliferation rate, Col-1 expression and TGF-ß1 release by HSC cells. Furthermore, activated PPAR-γ and increased lipid droplets induce cells to become quiescent, which is a key event to reversion of hepatic fibrosis. FBP also chelates iron showing potential to improve Cell redox state.
Asunto(s)
Compuestos Ferrosos/antagonistas & inhibidores , Fructosadifosfatos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Quelantes del Hierro/farmacología , Animales , Compuestos de Bifenilo/química , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Compuestos Ferrosos/farmacología , Regulación de la Expresión Génica , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/metabolismo , Gotas Lipídicas/efectos de los fármacos , Gotas Lipídicas/metabolismo , Ratones , Oxidación-Reducción , PPAR gamma/genética , PPAR gamma/metabolismo , Picratos/química , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismoRESUMEN
Hepatocellular carcinoma is the most prevalent type of tumor among primary tumors affecting the liver. Rapamycin is currently used as a basis for chemotherapy in the treatment of cancers, including the liver. Because it shows several adverse effects, minimizing these effects without compromising efficacy is important. In this sense other drugs may be used concomitantly. One of these drugs is fructose-1,6-bisphosphate (FBP), which has shown therapeutic effect in various pathological situations, having antioxidant and anti-inflammatory proprieties. The objective of the present study was to evaluate the activity of rapamycin in combination with the FBP in HepG2 cell proliferation and the mechanisms involved. HepG2 cells were analyzed after 72 h of treatment with both drugs. Cell proliferation, cytotoxicity, cytokines, apoptosis, senescence, autophagy and oxidative stress were accessed. Ιt was demonstrated that the combination is more efficient than the single use of substances, because subtherapeutic doses of rapamycin, when associated to FBP become effective, reducing cell proliferation, through a significant increase in the production of tiobarbituric acid reactive substances (TBARS), suggesting that this might be the cause of death by apoptosis. According to these results, we believe that the association of both drugs may be a promising choice for the treatment of hepatocarcinoma.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Fructosa-Bifosfatasa/administración & dosificación , Neoplasias Hepáticas/tratamiento farmacológico , Sirolimus/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Antioxidantes/administración & dosificación , Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Radicales Libres/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologíaRESUMEN
BACKGROUND AND OBJECTIVES: As the population ages, osteometabolic diseases and osteoporotic fractures emerge, resulting in substantial healthcare resource utilization and impaired quality of life. Many types of mechanical stimulation have the potential of being recognized by bone cells after a mechanical sign is transformed into a biological one (a process called mechanotransduction). The therapeutic ultrasound (TU) is one of several resources capable of promoting bone cell mechanical stimulation. Therefore, the main purpose of present study was to evaluate the effect of TU on the proliferation of pre-osteoblasts using in vitro bioassays. STUDY DESIGN/MATERIALS AND METHODS: We used MC3T3-E1 pre-osteoblast lineage cells kept in Alpha medium. Cells were treated using pulsed mode therapeutic ultrasound, with frequency of 1 MHz, intensity of 0.2 W/cm(2) (SATA), duty cycle of 20%, for 30 minutes. Nifedipine and rapamycin were used to further investigate the role of L-type Ca(2+) channels and mTOR pathway. Intracellular calcium, TGF-ß1, magnesium, and the mRNA levels of osteopontin, osteonectin, NF-κB1, p38α were evaluated. RESULTS: The results show that TU stimulates the growth of MC3T3-E1 cells and decreases the supernatant calcium and magnesium content. Also, it increases intracellular calcium, activates NF-κB1 and mTOR complex via p38α. Moreover, TU promoted a decrease in the TGF-ß1 synthesis, which is a cell growth inhibitor. CONCLUSIONS: Therapeutic ultrasound, with frequency of 1 MHz, intensity of 0.2 W/cm(2) (SATA) and pulsed mode, for 30 minutes, was able to increase the proliferation of preosteoblast-like bone cells. This effect was mediated by a calcium influx, with a consequent activation of the mTOR pathway, through increased NF-κB1 and p38α.
Asunto(s)
Proliferación Celular/efectos de la radiación , Proteína Quinasa 14 Activada por Mitógenos/fisiología , FN-kappa B/fisiología , Osteoblastos/efectos de la radiación , Serina-Treonina Quinasas TOR/fisiología , Terapia por Ultrasonido , Células 3T3 , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Ratones , Osteoblastos/metabolismo , Osteoblastos/patologíaRESUMEN
(+)-Catechin is a type of catechin present in large amounts in açaí fruits and cocoa seeds. Besides its antioxidant and anti-inflammatory activities, little is known about its effects in the liver, especially during hepatic fibrosis. We report here the effects of (+)-catechin on hepatic stellate cells. (+)-Catechin induced quiescent phenotype in GRX cells, along with an increase in lipid droplets. Proliferator-activated receptor γ mRNA expression was upregulated, whereas type I collagen mRNA expression was downregulated. Pro-inflammatory cytokines were not influenced by (+)-catechin, whereas the levels of interleukin 10 were significantly increased. The data provide evidence that (+)-catechin can reduce hepatic stellate cell activation.
Asunto(s)
Catequina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Animales , Línea Celular , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Citocinas/metabolismo , Regulación hacia Abajo/efectos de los fármacos , Células Estrelladas Hepáticas/citología , Interleucina-10/metabolismo , Lípidos/biosíntesis , Ratones , PPAR gamma/genética , PPAR gamma/metabolismo , ARN Mensajero/metabolismo , Estereoisomerismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Capsaicin, the active component of chili pepper, has been reported to have antiproliferative and anti-inflammatory effects on a variety of cell lines. In the current study, we aimed to investigate the effects of capsaicin during HSC activation and maintenance. Activated and freshly isolated HSCs were treated with capsaicin. Proliferation was measured by incorporation of EdU. Cell cycle arrest and apoptosis were investigated using flow cytometry. The migratory response to chemotactic stimuli was evaluated by a modified Boyden chamber assay. Activation markers and inflammatory cytokines were determined by qPCR, immunocytochemistry, and flow cytometry. Our results show that capsaicin reduces HSC proliferation, migration, and expression of profibrogenic markers of activated and primary mouse HSCs. In conclusion, the present study shows that capsaicin modulates proliferation, migration, and activation of HSC in vitro.
Asunto(s)
Capsaicina/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , Animales , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Citocinas/metabolismo , Células Estrelladas Hepáticas/citología , Células Estrelladas Hepáticas/enzimología , Células Estrelladas Hepáticas/metabolismo , Metaloproteinasas de la Matriz/metabolismo , RatonesRESUMEN
Hepatic stellate cells (HSC) play a key role in liver fibrogenesis. Activation of PPARγ and inhibition of fibrogenic molecules are potential strategies to block HSC activation and differentiation. Aware that the process of hepatic fibrosis involves inflammatory mediators, various anti-inflammatory substances have been studied in an attempt to revert fibrosis. The purpose of this study was to investigate the in vitro effects of fructose-1,6-bisphosphate (FBP) on HSC phenotype reversion. The results demonstrated that FBP induced quiescent phenotype in GRX cells via PPARγ activation. Significant decrease in type I collagen mRNA expression was observed in the first 24h of treatment. These events preceded the reduction of TGF-ß1 and total collagen secretion. Thus, FBP promoted downregulation of HSC activation by its antifibrotic action. These findings demonstrate that FBP may have potential as a novel therapeutic agent for the treatment of liver fibrosis.
Asunto(s)
Fructosadifosfatos/farmacología , Células Estrelladas Hepáticas/efectos de los fármacos , PPAR gamma/genética , Animales , Línea Celular , Supervivencia Celular/efectos de los fármacos , Colágeno/genética , Colágeno/metabolismo , Fibrosis/tratamiento farmacológico , Células Estrelladas Hepáticas/metabolismo , Metabolismo de los Lípidos/efectos de los fármacos , Ratones , ARN Mensajero/metabolismo , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Hepatic stellate cells (HSC) play a key role in liver fibrogenesis. Activation of PPARγ and inhibition of fibrogenic molecules are potential strategies to block HSC activation and differentiation. A number of natural products have been suggested to have antifibrotic effects for the de-activation and de-differentiation of HSCs. The purpose of this study was to investigate the in vitro effects of capsaicin on HSC de-activation and de-differentiation. The results demonstrated that capsaicin induced quiescent phenotype in GRX via PPARγ activation. Significant decrease in COX-2 and type I collagen mRNA expression was observed in the first 24 h of treatment. These events preceded the reduction of TGF-ß1 and total collagen secretion. Thus, capsaicin promoted down-regulation of HSC activation by its antifibrotic and anti-inflammatory actions. These findings demonstrate that capsaicin may have potential as a novel therapeutic agent for the treatment of liver fibrosis.