Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nanoscale Adv ; 1(1): 305-313, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36132485

RESUMEN

Aromatic nitro compounds are toxic and not biodegradable. Therefore, the elimination of nitro groups is very important. Metal catalysts play an important role in the catalytic transformation. We present here flower-like 3D hierarchical Co3O4/NiO microspheres, which are prepared by a chemical precipitation method. The as-prepared catalyst is characterized by FTIR, SEM, TEM, EDS, XRD, XPS and N2 sorption isotherms. They have shown different morphologies such as flower, nanocubes, and hexagonal structure at different calcined temperatures. The synthesized catalyst is tested and used for the reduction of 4-nitrophenol to 4-aminophenol in the presence of sodium borohydride as a reducing agent. The reaction takes place in an aqueous medium at room temperature. The bimetallic catalyst Co3O4/NiO showed good performance and reusability.

2.
Adv Mater ; 31(7): e1805921, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30589117

RESUMEN

Together with the evolution of digital health care, the wearable electronics field has evolved rapidly during the past few years and is expected to be expanded even further within the first few years of the next decade. As the next stage of wearables is predicted to move toward integrated wearables, nanomaterials and nanocomposites are in the spotlight of the search for novel concepts for integration. In addition, the conversion of current devices and attachment-based wearables into integrated technology may involve a significant size reduction while retaining their functional capabilities. Nanomaterial-based wearable sensors have already marked their presence with a significant distinction while nanomaterial-based wearable actuators are still at their embryonic stage. This review looks into the contribution of nanomaterials and nanocomposites to wearable technology with a focus on wearable sensors and actuators.


Asunto(s)
Nanoestructuras , Dispositivos Electrónicos Vestibles , Acelerometría/instrumentación , Sistemas de Liberación de Medicamentos/instrumentación , Humanos , Monitoreo Fisiológico/instrumentación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA