Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(15)2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39123409

RESUMEN

BACKGROUND: Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES: This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS: Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS: VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS: While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.

2.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38998754

RESUMEN

In breast cancer, Targeted Axillary Dissection (TAD) allows for the selective excision of the sentinel lymph node (SLN) during primary tumor surgery. TAD consists of the resection of labelled SLNs prior to neoadjuvant chemotherapy (NACT). Numerous clinical and preclinical studies have explored the use of carbon-based colloids for SLN tattooing prior to NACT. However, carbon vectors show varying degrees of inflammatory reactions and, in about one fifth of cases, carbon particles migrate via the lymphatic pathway to other nodes, causing the SLN to mismatch the tattooed node. To overcome these limitations, in this study, we explored the use of melanin as a staining endogenous pigment. We synthesized and characterized melanin-loaded polymeric nanoparticles (Mel-NPs) and used them to tattoo lymph nodes in pig animal models given the similarity in the size of the human and pig nodes. Mel-NPs tattooed lymph nodes showed high identification rates, reaching 83.3% positive identification 16 weeks after tattooing. We did not observe any reduction in the identification as time increased, implying that the colloid is stable in the lymph node tissue. In addition, we performed histological and ultrastructural studies to characterize the biological behavior of the tag. We observed foreign-body-like granulomatous inflammatory responses associated with Mel-NPs, characterized by the formation of multinucleated giant cells. In addition, electron microscopy studies showed that uptake is mainly performed by macrophages, and that macrophages undergo cellular damage associated with particle uptake.

3.
Disaster Med Public Health Prep ; 17: e561, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37937358

RESUMEN

Search and rescue teams and Antarctic research groups use protective cold-water anti-exposure suits (AES) when cruising on Zodiacs. Extremity tourniquet (ET) self-application (SA) donned with AESs has not been previously studied. Our study therefore assessed the SA of 5 commercial ETs (CAT, OMNA, RATS, RMT, and SWAT-T) among 15 volunteers who donned these suits. Tourniquet's SA ability, ease of SA, tolerance, and tourniquet preference were measured. All ETs tested were self-applied to the upper extremity except for the SWAT, which was self-applied with the rest to the lower extremity. Ease- of- SA mean values were compared using the Friedman and Durbin-Conover post hoc tests (P < 0.001). Regarding the upper extremity, OMNA achieved the highest score of 8.5 out of 10, while RMT, and SWAT received lower scores than other options (P < 0.001). For lower extremities, SWAT was found to be inferior to other options (P < 0.01). Overall, OMNA was the best performer. The RATS showed significantly lower tolerance than the other groups in repeated- measures ANOVA with a Tukey post hoc test (P < 0.01). Additionally, out of the 5 ETs tested, 60% of subjects preferred OMNA. The study concluded that SA commercial ETs are feasible over cold-water anti-exposure suits in the Antarctic climate.


Asunto(s)
Hemorragia , Torniquetes , Humanos , Regiones Antárticas , Extremidades , Diazooxonorleucina , Agua
4.
BMC Emerg Med ; 23(1): 101, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37653492

RESUMEN

BACKGROUND: Our study aimed to assess the ability of nonmedical civilians to self-apply extremity tourniquets in cold weather conditions while wearing insulating technical clothing after receiving basic training. METHODS: A field study was conducted among 37 voluntary participants of an expedition party to the Spanish Antarctic base. The researchers assessed the participant's ability to self-apply five commercial extremity tourniquets (CAT, OMNA, RMT, SWAT-T, and RATS) over cold-weather clothing and their achieved effectiveness for vascular occlusion. Upper extremity self-application was performed with a single-handed technique (OHT), and lower extremity applying a two-handed technique (THT). Perceptions of self-application ease mean values ± standard deviation (SD) were compared by applying a 5% statistical significance threshold. Frequency count determined tourniquet preference. RESULTS: All the tested ETs, except the SWAT-T, were properly self-applied with an OHT, resulting in effective vascular occlusion in the upper extremity. The five devices tested were self-applied correctly in the lower extremities using THT. The ratcheting marine-designed OMNA ranked the highest for application easiness on both the upper and lower extremities, and the windlass CAT model was the preferred device by most participants. CONCLUSIONS: Civilian extremity tourniquet self-application on both upper and lower extremities can be accomplished in cold weather conditions despite using cold-weather gloves and technical clothing after receiving brief training. The ratcheting marine-designed OMNA ranked the highest for application ease, and the windlass CAT model was the preferred device.


Asunto(s)
Extremidades , Torniquetes , Humanos , Tiempo (Meteorología)
5.
Sci Rep ; 13(1): 11180, 2023 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-37430101

RESUMEN

Cancer progression and its impact on treatment response and prognosis is deeply regulated by tumour microenvironment (TME). Cancer cells are in constant communication and modulate TME through several mechanisms, including transfer of tumour-promoting cargos through extracellular vesicles (EVs) or oncogenic signal detection by primary cilia. Spheresomes are a specific EV that arise from rough endoplasmic reticulum-Golgi vesicles. They accumulate beneath cell membrane and are released to the extracellular medium through multivesicular spheres. This study describes spheresomes in low-grade gliomas using electron microscopy. We found that spheresomes are more frequent than exosomes in these tumours and can cross the blood-brain barrier. Moreover, the distinct biogenesis processes of these EVs result in unique cargo profiles, suggesting different functional roles. We also identified primary cilia in these tumours. These findings collectively contribute to our understanding of glioma progression and metastasis.


Asunto(s)
Exosomas , Vesículas Extracelulares , Glioma , Humanos , Barrera Hematoencefálica , Membrana Celular , Microambiente Tumoral
7.
Histochem Cell Biol ; 159(1): 47-60, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36175690

RESUMEN

The cytoskeleton not only deals with numerous interaction and communication mechanisms at the cellular level but also has a crucial role in the viral infection cycle. Although numerous aspects of SARS-CoV-2 virus interaction at the cellular level have been widely studied, little has been reported about the structural and functional response of the cytoskeleton. This work aims to characterize, at the ultrastructural level, the modifications in the cytoskeleton of infected cells, namely, its participation in filopodia formation, the junction of these nanostructures forming bridges, the viral surfing, and the generation of tunnel effect nanotubes (TNT) as probable structures of intracellular viral dissemination. The three-dimensional reconstruction from the obtained micrographs allowed observing viral propagation events between cells in detail for the first time. More profound knowledge about these cell-cell interaction models in the viral spread mechanisms could lead to a better understanding of the clinical manifestations of COVID-19 disease and to find new therapeutic strategies.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Imagenología Tridimensional , Citoesqueleto , Comunicación Celular
8.
Materials (Basel) ; 15(14)2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35888208

RESUMEN

The use of face masks and air purification systems has been key to curbing the transmission of SARS-CoV-2 aerosols in the context of the current COVID-19 pandemic. However, some masks or air conditioning filtration systems are designed to remove large airborne particles or bacteria from the air, being limited their effectiveness against SARS-CoV-2. Continuous research has been aimed at improving the performance of filter materials through nanotechnology. This article presents a new low-cost method based on electrostatic forces and coordination complex formation to generate antiviral coatings on filter materials using silver nanoparticles and polyethyleneimine. Initially, the AgNPs synthesis procedure was optimized until reaching a particle size of 6.2 ± 2.6 nm, promoting a fast ionic silver release due to its reduced size, obtaining a stable colloid over time and having reduced size polydispersity. The stability of the binding of the AgNPs to the fibers was corroborated using polypropylene, polyester-viscose, and polypropylene-glass spunbond mats as substrates, obtaining very low amounts of detached AgNPs in all cases. Under simulated operational conditions, a material loss less than 1% of nanostructured silver was measured. SEM micrographs demonstrated high silver distribution homogeneity on the polymer fibers. The antiviral coatings were tested against SARS-CoV-2, obtaining inactivation yields greater than 99.9%. We believe our results will be beneficial in the fight against the current COVID-19 pandemic and in controlling other infectious airborne pathogens.

9.
Artículo en Inglés | MEDLINE | ID: mdl-35682191

RESUMEN

The global acceptance of the SARS-CoV-2 airborne transmission led to prevention measures based on quality control and air renewal. Among them, carbon dioxide (CO2) measurement has positioned itself as a cost-efficiency, reliable, and straightforward method to assess indoor air renewal indirectly. Through the control of CO2, it is possible to implement and validate the effectiveness of prevention measures to reduce the risk of contagion of respiratory diseases by aerosols. Thanks to the method scalability, CO2 measurement has become the gold standard for diagnosing air quality in shared spaces. Even though collective transport is considered one of the environments with the highest rate of COVID-19 propagation, little research has been done where the air inside vehicles is analyzed. This work explores the generation and accumulation of metabolic CO2 in a tramway (Zaragoza, Spain) operation. Importantly, we propose to use the indicator ppm/person as a basis for comparing environments under different conditions. Our study concludes with an experimental evaluation of the benefit of modifying some parameters of the Heating-Ventilation-Air conditioning (HVAC) system. The study of the particle retention efficiency of the implemented filters shows a poor air cleaning performance that, at present, can be counteracted by opening windows. Seeking a post-pandemic scenario, it will be crucial to seek strategies to improve air quality in public transport to prevent the transmission of infectious diseases.


Asunto(s)
Contaminación del Aire Interior , COVID-19 , Enfermedades Transmisibles , Aerosoles , Contaminación del Aire Interior/análisis , COVID-19/prevención & control , Dióxido de Carbono , Humanos , SARS-CoV-2 , Ventilación
10.
J Clin Med ; 11(9)2022 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-35566733

RESUMEN

The spread dynamics of the SARS-CoV-2 virus have not yet been fully understood after two years of the pandemic. The virus's global spread represented a unique scenario for advancing infectious disease research. Consequently, mechanistic epidemiological theories were quickly dismissed, and more attention was paid to other approaches that considered heterogeneity in the spread. One of the most critical advances in aerial pathogens transmission was the global acceptance of the airborne model, where the airway is presented as the epicenter of the spread of the disease. Although the aerodynamics and persistence of the SARS-CoV-2 virus in the air have been extensively studied, the actual probability of contagion is still unknown. In this work, the individual heterogeneity in the transmission of 22 patients infected with COVID-19 was analyzed by close contact (cough samples) and air (environmental samples). Viral RNA was detected in 2/19 cough samples from patient subgroups, with a mean Ct (Cycle Threshold in Quantitative Polymerase Chain Reaction analysis) of 25.7 ± 7.0. Nevertheless, viral RNA was only detected in air samples from 1/8 patients, with an average Ct of 25.0 ± 4.0. Viral load in cough samples ranged from 7.3 × 105 to 8.7 × 108 copies/mL among patients, while concentrations between 1.1-4.8 copies/m3 were found in air, consistent with other reports in the literature. In patients undergoing follow-up, no viral load was found (neither in coughs nor in the air) after the third day of symptoms, which could help define quarantine periods in infected individuals. In addition, it was found that the patient's Ct should not be considered an indicator of infectiousness, since it could not be correlated with the viral load disseminated. The results of this work are in line with proposed hypotheses of superspreaders, which can attribute part of the heterogeneity of the spread to the oversized emission of a small percentage of infected people.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA