Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Biochim Biophys Acta Proteins Proteom ; 1869(4): 140602, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33422670

RESUMEN

Phosphoglucose isomerases (PGIs) belong to a class of enzymes that catalyze the reversible isomerization of glucose-6-phosphate to fructose-6-phosphate. PGIs are crucial in glycolysis and gluconeogenesis pathways and proposed as serving additional extracellular functions in eukaryotic organisms. The phosphoglucose isomerase function of TM1385, a previously uncharacterized protein from Thermotoga maritima, was hypothesized based on structural similarity to established PGI crystal structures and computational docking. Kinetic and colorimetric assays combined with 1H nuclear magnetic resonance (NMR) spectroscopy experimentally confirm that TM1385 is a phosphoglucose isomerase (TmPGI). Evidence of solvent exchange in 1H NMR spectra supports that TmPGI isomerization proceeds through a cis-enediol-based mechanism. To determine which amino acid residues are critical for TmPGI catalysis, putative active site residues were mutated with alanine and screened for activity. Results support that E281 is most important for TmPGI formation of the cis-enediol intermediate, and the presence of either H310 or K422 may be required for catalysis, similar to previous observations from homologous PGIs. However, only TmPGI E281A/Q415A and H310A/K422A double mutations abolished activity, suggesting that there are redundant catalytic residues, and Q415 may participate in sugar phosphate isomerization upon E281 mutation. Combined, we propose that TmPGI E281 participates directly in the cis-enediol intermediate step, and either H310 or K422 may facilitate sugar ring opening and closure.


Asunto(s)
Proteínas Bacterianas/metabolismo , Glucosa-6-Fosfato Isomerasa/metabolismo , Thermotoga maritima/metabolismo , Proteínas Bacterianas/química , Catálisis , Dominio Catalítico , Glucosa-6-Fosfato Isomerasa/química , Isomerismo , Cinética , Espectroscopía de Protones por Resonancia Magnética , Especificidad por Sustrato
2.
medRxiv ; 2020 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-32511466

RESUMEN

Global airline networks play a key role in the global importation of emerging infectious diseases. Detailed information on air traffic between international airports has been demonstrated to be useful in retrospectively validating and prospectively predicting case emergence in other countries. In this paper, we use a well-established metric known as effective distance on the global air traffic data from IATA to quantify risk of emergence for different countries as a consequence of direct importation from China, and compare it against arrival times for the first 24 countries. Using this model trained on official first reports from WHO, we estimate time of arrival (ToA) for all other countries. We then incorporate data on airline suspensions to recompute the effective distance and assess the effect of such cancellations in delaying the estimated arrival time for all other countries. Finally we use the infectious disease vulnerability indices to explain some of the estimated reporting delays.

3.
J Struct Biol ; 207(2): 218-224, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31152775

RESUMEN

The saturated hydrocarbon bisabolane is a diesel fuel substitute that can be derived from sesquiterpene precursors bisabolene or curcumene. These sesquiterpenes are generated from farnesyl diphosphate in reactions catalyzed by eponymous terpenoid cyclases, but they can also be generated by engineered terpenoid cyclases in which cyclization cascades have been reprogrammed by mutagenesis. Here, we describe the X-ray crystal structure determination of F95Q epi-isozizaene synthase (EIZS), in which the new activity of curcumene biosynthesis has been introduced and the native activity of epi-isozizaene biosynthesis has been suppressed. F95Q EIZS generates ß- and γ-curcumene regioisomers with greater than 50% yield. Structural analysis of the closed active site conformation, stabilized by the binding of 3 Mg2+ ions, inorganic pyrophosphate, and the benzyltriethylammonium cation, reveals a product-like active site contour that serves as the cyclization template. Remolding the active site contour to resemble curcumene instead of epi-isozizaene is the principal determinant of the reprogrammed cyclization cascade. Intriguingly, an ordered water molecule comprises part of the active site contour. This water molecule may also serve as a final proton acceptor, along with inorganic pyrophosphate, in the generation of curcumene regioisomers; it may also contribute to the formation of sesquiterpene alcohols identified as minor side products. Thus, the substitution of polar side chains for nonpolar side chains in terpenoid cyclase active sites can result in the stabilization of bound water molecules that, in turn, can serve template functions in isoprenoid cyclization reactions.


Asunto(s)
Biocombustibles , Liasas de Carbono-Carbono/ultraestructura , Sesquiterpenos Monocíclicos/química , Sesquiterpenos/química , Alcoholes/química , Liasas de Carbono-Carbono/química , Catálisis , Dominio Catalítico/genética , Cristalografía por Rayos X , Mutagénesis/genética , Compuestos de Amonio Cuaternario/química , Terpenos/química , Agua/química
4.
Biochemistry ; 56(43): 5798-5811, 2017 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-28967743

RESUMEN

The sesquiterpene cyclase epi-isozizaene synthase (EIZS) catalyzes the cyclization of farnesyl diphosphate to form the tricyclic hydrocarbon precursor of the antibiotic albaflavenone. The hydrophobic active site pocket of EIZS serves as a template as it binds and chaperones the flexible substrate and carbocation intermediates through the conformations required for a multistep reaction sequence. We previously demonstrated that the substitution of hydrophobic residues with other hydrophobic residues remolds the template and expands product chemodiversity [Li, R., Chou, W. K. W., Himmelberger, J. A., Litwin, K. M., Harris, G. G., Cane, D. E., and Christianson, D. W. (2014) Biochemistry 53, 1155-1168]. Here, we show that the substitution of hydrophobic residues-specifically, Y69, F95, F96, and W203-with polar side chains also yields functional enzyme catalysts that expand product chemodiversity. Fourteen new EIZS mutants are reported that generate product arrays in which eight new sesquiterpene products have been identified. Of note, some mutants generate acyclic and cyclic hydroxylated products, suggesting that the introduction of polarity in the hydrophobic pocket facilitates the binding of water capable of quenching carbocation intermediates. Furthermore, the substitution of polar residues for F96 yields high-fidelity sesquisabinene synthases. Crystal structures of selected mutants reveal that residues defining the three-dimensional contour of the hydrophobic pocket can be substituted without triggering significant structural changes elsewhere in the active site. Thus, more radical nonpolar-polar amino acid substitutions should be considered when terpenoid cyclase active sites are remolded by mutagenesis with the goal of exploring and expanding product chemodiversity.


Asunto(s)
Sustitución de Aminoácidos , Proteínas Bacterianas/química , Liasas de Carbono-Carbono/química , Modelos Moleculares , Streptomyces coelicolor/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Liasas de Carbono-Carbono/genética , Liasas de Carbono-Carbono/metabolismo , Dominio Catalítico , Cristalografía por Rayos X , Interacciones Hidrofóbicas e Hidrofílicas , Mutación Missense , Sesquiterpenos/química , Sesquiterpenos/metabolismo , Streptomyces coelicolor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA