Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 19319, 2021 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-34588539

RESUMEN

Understanding ownership effects on large wildfires is a precursor to the development of risk governance strategies that better protect people and property and restore fire-adapted ecosystems. We analyzed wildfire events in the Pacific Northwest from 1984 to 2018 to explore how area burned responded to ownership, asking whether particular ownerships burned disproportionately more or less, and whether these patterns varied by forest and grass/shrub vegetation types. While many individual fires showed indifference to property lines, taken as a whole, we found patterns of disproportionate burning for both forest and grass/shrub fires. We found that forest fires avoided ownerships with a concentration of highly valued resources-burning less than expected in managed US Forest Service forested lands, private non-industrial, private industrial, and state lands-suggesting the enforcement of strong fire protection policies. US Forest Service wilderness was the only ownership classification that burned more than expected which may result from the management of natural ignitions for resource objectives, its remoteness or both. Results from this study are relevant to inform perspectives on land management among public and private entities, which may share boundaries but not fire management goals, and support effective cross-boundary collaboration and shared stewardship across all-lands.

2.
Risk Anal ; 38(10): 2105-2127, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29694686

RESUMEN

We assessed transboundary wildfire exposure among federal, state, and private lands and 447 communities in the state of Arizona, southwestern United States. The study quantified the relative magnitude of transboundary (incoming, outgoing) versus nontransboundary (i.e., self-burning) wildfire exposure based on land tenure or community of the simulated ignition and the resulting fire perimeter. We developed and described several new metrics to quantify and map transboundary exposure. We found that incoming transboundary fire accounted for 37% of the total area burned on large parcels of federal and state lands, whereas 63% of the area burned was burned by ignitions within the parcel. However, substantial parcel to parcel variation was observed for all land tenures for all metrics. We found that incoming transboundary fire accounted for 66% of the total area burned within communities versus 34% of the area burned by self-burning ignitions. Of the total area burned within communities, private lands contributed the largest proportion (36.7%), followed by national forests (19.5%), and state lands (15.4%). On average seven land tenures contributed wildfire to individual communities. Annual wildfire exposure to structures was highest for wildfires ignited on state and national forest land, followed by tribal, private, and BLM. We mapped community firesheds, that is, the area where ignitions can spawn fires that can burn into communities, and estimated that they covered 7.7 million ha, or 26% of the state of Arizona. Our methods address gaps in existing wildfire risk assessments, and their implementation can help reduce fragmentation in governance systems and inefficiencies in risk planning.

3.
PLoS One ; 12(3): e0172867, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28257416

RESUMEN

We characterized wildfire transmission and exposure within a matrix of large land tenures (federal, state, and private) surrounding 56 communities within a 3.3 million ha fire prone region of central Oregon US. Wildfire simulation and network analysis were used to quantify the exchange of fire among land tenures and communities and analyze the relative contributions of human versus natural ignitions to wildfire exposure. Among the land tenures examined, the area burned by incoming fires averaged 57% of the total burned area. Community exposure from incoming fires ignited on surrounding land tenures accounted for 67% of the total area burned. The number of land tenures contributing wildfire to individual communities and surrounding wildland urban interface (WUI) varied from 3 to 20. Community firesheds, i.e. the area where ignitions can spawn fires that can burn into the WUI, covered 40% of the landscape, and were 5.5 times larger than the combined area of the community core and WUI. For the major land tenures within the study area, the amount of incoming versus outgoing fire was relatively constant, with some exceptions. The study provides a multi-scale characterization of wildfire networks within a large, mixed tenure and fire prone landscape, and illustrates the connectivity of risk between communities and the surrounding wildlands. We use the findings to discuss how scale mismatches in local wildfire governance result from disconnected planning systems and disparate fire management objectives among the large landowners (federal, state, private) and local communities. Local and regional risk planning processes can adopt our concepts and methods to better define and map the scale of wildfire risk from large fire events and incorporate wildfire network and connectivity concepts into risk assessments.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Medición de Riesgo , Desastres , Gobierno , Humanos , Oregon , Gestión de Riesgos
4.
PLoS One ; 9(1): e84760, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24454747

RESUMEN

Previous research has shown that fires burn certain land cover types disproportionally to their abundance. We used quantile regression to study land cover proneness to fire as a function of fire size, under the hypothesis that they are inversely related, for all land cover types. Using five years of fire perimeters, we estimated conditional quantile functions for lower (avoidance) and upper (preference) quantiles of fire selectivity for five land cover types - annual crops, evergreen oak woodlands, eucalypt forests, pine forests and shrublands. The slope of significant regression quantiles describes the rate of change in fire selectivity (avoidance or preference) as a function of fire size. We used Monte-Carlo methods to randomly permutate fires in order to obtain a distribution of fire selectivity due to chance. This distribution was used to test the null hypotheses that 1) mean fire selectivity does not differ from that obtained by randomly relocating observed fire perimeters; 2) that land cover proneness to fire does not vary with fire size. Our results show that land cover proneness to fire is higher for shrublands and pine forests than for annual crops and evergreen oak woodlands. As fire size increases, selectivity decreases for all land cover types tested. Moreover, the rate of change in selectivity with fire size is higher for preference than for avoidance. Comparison between observed and randomized data led us to reject both null hypotheses tested ([Formula: see text] = 0.05) and to conclude it is very unlikely the observed values of fire selectivity and change in selectivity with fire size are due to chance.


Asunto(s)
Conservación de los Recursos Naturales , Incendios , Geografía , Portugal , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA