RESUMEN
There is growing interest in the development of biodegradable packaging materials containing natural antioxidant extracts. In this sense, the use of extracts obtained from agro-industrial byproducts has proved to be a sustainable alternative. In this study, Pinhão extract, a byproduct of Pinhão (Araucaria angustifolia (Bertol.) Kuntze) seed consumption, was characterized by HPLC-DAD-ESI/MSn, demonstrating the presence of eight phenolic compounds, (+)-catechin and (-)-epicatechin being the most abundant molecules. TPS/PBAT films containing Pinhão extract were produced by blown extrusion and their properties (tensile properties, thermal characteristics and microstructure) were evaluated in order to determine the effect of the presence of extracts. Results suggested that the interaction between the phenolic compounds of the extract and the polymeric matrix caused the reduction in the crystallinity degree, and an increase in the starch glass transition temperature. The presence of Araucaria angustifolia (Bertol.) Kuntze extract significantly (p < 0.05) affected the color and opacity of the film. Regarding water vapor permeation, no significant difference (p > 0.05) was detected. However, the water solubility and the contact angle with water (polar solvent) and diiodomethane (non-polar solvent) significantly changed due to the extract addition. Moreover, the Pinhão extract conferred significant antioxidant capacity to the TPS/PBAT films as determined by DPPH, suggesting that this material can be applied as an active packaging material.
Asunto(s)
Araucaria/química , Embalaje de Alimentos/instrumentación , Fenoles/química , Extractos Vegetales/química , Poliésteres/química , Almidón/química , Color , Calor , Fenoles/aislamiento & purificación , Extractos Vegetales/aislamiento & purificación , Polímeros/química , Semillas/química , Resistencia a la TracciónRESUMEN
Curcumin, the main bioactive polyphenolic compound in Curcuma longa L. rhizomes has a wide range of bioactive properties. Curcumin presents low solubility in water and thus limited bioavailability, which decreases its applicability. In this study, cytotoxic effects of curcumin solid dispersions (CurSD) were evaluated against tumor (breast adenocarcinoma and lung, cervical and hepatocellular carcinoma) and non-tumor (PLP2) cells, while cytotoxic and genotoxic effects were evaluated in Allium cepa. The effect of the CurSD on the acetylcholinesterase (AChE), butyrylcholinesterase (BChE), glutathione S-transferase (GST), and monoamine oxidase (MAO A-B) enzymes was determined, as well as its capacity to inhibit the oxidative hemolysis (OxHLIA) and the formation of thiobarbituric acid reactive substances (TBARS). CurSD are constituted by nanoparticles that are readily dispersible in water, and inhibited 24% and 64% of the AChE and BChE activity at 100⯵M, respectively. GST activity was inhibited at 30⯵M while MAO-A and B activity were inhibited at 100⯵M. CurSD showed cytotoxicity against all the tested tumor cell lines without toxic effects for non-tumor cells. No cytotoxic and genotoxic potential was detected with the Allium cepa test. CurSD maintained the characteristics of free curcumin on the in vitro modulation of important enzymes without appreciable toxicity.
Asunto(s)
Antioxidantes/farmacología , Carcinógenos/farmacología , Curcumina/farmacología , Mutágenos/farmacología , Animales , Línea Celular Tumoral , Formas de Dosificación , Inhibidores Enzimáticos/farmacología , Hemólisis/efectos de los fármacos , Humanos , Ratones , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/biosíntesis , Cebollas/efectos de los fármacos , Oxidación-Reducción , Células RAW 264.7 , Ratas , Sustancias Reactivas al Ácido Tiobarbitúrico/metabolismoRESUMEN
There is an increasing demand for healthier foodstuff containing specific compounds such as Polyunsaturated Fatty Acids (PUFAs). In the case of PUFAs, protection against oxidative degradation is challengeable and microencapsulation emerges as an alternative. Mayonnaises containing microencapsulated oils could be a source of PUFAs. The objective was to formulate mayonnaises containing microencapsulated chia seeds oil, pumpkin seeds oil or baru oil. Micrometric particles with high encapsulation efficiency were produced and thermal analyses indicated an increased thermal stability of all oils after encapsulation. Rheology studies highlighted an increase in the mayonnaise viscosity when microparticles containing chia and pumpkin seeds oil were added. Mechanical texture was not affected by the presence of microparticles in the mayonnaise in all formulations tested. Nevertheless, samples containing microcapsules up to 5%wt were not distinguished from the base-mayonnaise in the sensorial test. Overall, enriched mayonnaises were successfully produced and encapsulation was efficient in protecting oils from oxidation.
Asunto(s)
Ácidos Grasos Insaturados/química , Industria de Procesamiento de Alimentos/métodos , Alimentos , Aceites de Plantas/química , Cápsulas , Cucurbita/química , Composición de Medicamentos , Oxidación-Reducción , Prunus/química , Reología , Salvia/química , Semillas/químicaRESUMEN
Beta-carotene is a carotenoid precursor of vitamin A, known for its biological activities. Due to its high hydrophobicity, nanonization processes, i.e. the transformation into nanoparticles, can improve its water affinity, and therefore the activity in aqueous systems. The objective of this study was to produce beta-carotene nanoparticles by the solid dispersion method and to evaluate their effects on the activity of glutathione-S-transferase and acetylcholinesterase enzymes using Drosophila melanogaster (DM) homogenate, the superoxide dismutase- and catalase-like activities under in vitro conditions, and their cytotoxic properties against tumor and non-tumor cells. The formed nanometric beta-carotene particles resulted in stable colloids, readily dispersed in water, able to modulate acetylcholinesterase (AChE) activity, and presenting high potential to control the cholinergic system. Beta-carotene nanoparticles, at concentrations much lower than the pure pristine beta-carotene, presented in vitro mimetic activity to superoxide dismutase and altered glutathione-S-transferase activity in DM tissue. The content of hydrogen peroxide was neither affected by the nanoparticles (in aqueous solution) nor by pristine beta-carotene (in DMSO). In the cytotoxic assays, beta-carotene nanoparticles dispersed in water showed activity against four different tumor cell lines. Overall, beta-carotene nanoparticles presented significant bioactivity in aqueous medium surpassing their high hydrophobicity constraint.
Asunto(s)
Antioxidantes/farmacología , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/efectos de los fármacos , Drosophila melanogaster/enzimología , beta Caroteno/farmacología , Animales , Antioxidantes/química , Catalasa/metabolismo , Línea Celular Tumoral , Drosophila melanogaster/genética , Glutatión Peroxidasa/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Nanopartículas/química , Superóxido Dismutasa/metabolismo , beta Caroteno/químicaRESUMEN
Food by-products containing bioactive substances have attracted attention due to the possibility of adding values to residues of the food industry. In this work, the extraction of phenolic compounds from pinhão seed coats (Araucaria angustifolia (Bertol.) Kuntze) using a central composite rotatable design was applied to obtain prediction models for the extract volume yield, total phenolic content, total phenolic acids and total flavonoids. Principal component analysis and hierarchical cluster analysis were implemented showing an evident poor effect of the temperature on phenolic compounds extraction, which is in accordance with the prediction model obtained by the experimental design for total phenolic acids. Volume yield presented a high positive correlation with extraction temperature, followed by solvent composition. Scanning electron microscopy showed that higher temperatures and lower ethanol percentages resulted in highly defibrillated pinhão coats that retained more extract after the extraction process, leading to lower volume yield percentages.
Asunto(s)
Antioxidantes/química , Fraccionamiento Químico/métodos , Extractos Vegetales/química , Tracheophyta/química , Antioxidantes/análisis , Análisis por Conglomerados , Etanol/química , Flavonoides/análisis , Flavonoides/química , Flavonoides/aislamiento & purificación , Fenoles/análisis , Fenoles/química , Fenoles/aislamiento & purificación , Análisis de Componente Principal , Semillas/química , Solventes/química , TemperaturaRESUMEN
The aim of this work was to produce an extract rich in different bioactive compounds from Arbutus unedo L. fruits to enhance its possible valorization and commercialization. The conditions of the main variables of maceration, microwave, and ultrasound assisted extractions (MA, MAE and UAE, respectively) were optimized and compared in terms of its composition (based on the total material extracted, total content in carbohydrates, phenolic and flavonoid compounds) and its preservative potential (based on the response of four in vitro antioxidant assays). The key variables of each extraction technique (time, temperature or power and hydroalcoholic mixture) were evaluated by specific experimental designs using response surface methodology. Mathematical models were developed and numerical optimal values for each extraction technique and response were achieved. Regarding the extraction of target compositional compounds, MAE was the most efficient, closely followed by MA. In terms of its preservative potential, MAE was the most suitable solution, but MA gave similar results at lower temperatures (~90⯰C). Globally, MA and MAE were the best options conducting to optimal solutions using reduced amounts of ethanol. UAE required higher ethanol contents (~60%). The results showed alternatives to obtain extracts of A. unedo fruits, supporting their potential to be exploited at industrial level.