Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Chirality ; 31(7): 534-542, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31197903

RESUMEN

This work reports the green organic chemistry synthesis of E-2-cyano-3(furan-2-yl) acrylamide under microwave radiation (55 W), as well as the use of filamentous marine and terrestrial-derived fungi, in the first ene-reduction of 2-cyano-3-(furan-2-yl) acrylamide to (R)-2-cyano-3-(furan-2-yl)propanamide. The fungal strains screened included Penicillium citrinum CBMAI 1186, Trichoderma sp. CBMAI 932 and Aspergillus sydowii CBMAI 935, and the filamentous terrestrial fungi Aspergillus sp. FPZSP 146 and Aspergillus sp. FPZSP 152. A compound with an uncommon CN-bearing stereogenic center at the α-C position was obtained by enantioselective reactions mediated in the presence of the microorganisms yielding the (R)-2-cyano-3-(furan-2-yl) propanamide 3a. Its isolated yield and e.e. ranged from 86% to 98% and 39% to 99%, respectively. The absolute configuration of the biotransformation products was determined by time-dependent density functional theory (TD-DFT) calculations of electronic circular dichroism (ECD) spectra. Finally, the tautomerization of 2-cyano-3-(furan-2-yl) propanamide 3a to form an achiral ketenimine was observed and investigated in presence of protic solvents.

2.
Chemosphere ; 234: 461-470, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31228848

RESUMEN

The performances of distinct BDD anodes (boron doping of 100, 500 and 2500 ppm, with sp3/sp2 carbon ratios of 215, 325, and 284, respectively) in the electrochemical degradation of ciprofloxacin - CIP (0.5 L of 50 mg L-1 in 0.10 M Na2SO4, at 25 °C) were comparatively assessed using a recirculating flow system with a filter-press reactor. Performance was assessed by monitoring the CIP and total organic carbon (TOC) concentrations, oxidation intermediates, and antimicrobial activity against Escherichia coli as a function of electrolysis time. CIP removal was strongly affected by the solution pH (kept fixed), flow conditions, and current density; similar trends were obtained independently of the BDD anode used, but the BDD100 anode yielded the best results. Enhanced mass transport was achieved at a low flow rate by promoting the solution turbulence within the reactor. The fastest complete CIP removal (within 20 min) was attained at j = 30 mA cm-2, pH = 10.0, and qV = 2.5 L min-1 + bypass turbulence promotion. TOC removal was practically accomplished only after 10 h of electrolysis, with quite similar performances by the distinct BDD anodes. Five initial oxidation intermediates were identified (263 ≤ m/z ≤ 348), whereas only two terminal oxidation intermediates were detected (oxamic and formic acids). The antimicrobial activity of the electrolyzed CIP solution was almost completely removed within 10 h of electrolysis. The characteristics of the BDD anodes only had a marked effect on the CIP removal rate (best performance by the least-doped anode), contrasting with other data in the literature.


Asunto(s)
Ciprofloxacina/química , Electrólisis/métodos , Contaminantes Químicos del Agua/química , Antibacterianos/análisis , Antibacterianos/química , Boro , Carbono/análisis , Carbono/química , Ciprofloxacina/análisis , Diamante , Electrodos , Escherichia coli/efectos de los fármacos , Cinética , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
4.
Environ Sci Pollut Res Int ; 26(5): 4438-4449, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29876851

RESUMEN

The electrochemical degradation of ciprofloxacin-CIP (50 mg L-1 in 0.10 mol L-1 Na2SO4) was investigated using a double-sided Ti-Pt/ß-PbO2 anode in a filter-press flow reactor, with identification of oxidation intermediates and follow-up of antimicrobial activity against Escherichia coli. The effect of solution pH, flow rate, current density, and temperature on the CIP removal rate was evaluated. All of these parameters did affect the CIP removal performance; thus, optimized electrolysis conditions were further explored: pH = 10, qV = 6.5 L min-1, j = 30 mA cm-2, and θ = 25 °C. Therefore, CIP was removed within 2 h, whereas ~75% of the total organic carbon concentration (TOC) was removed after 5 h and then, the solution no longer presented antimicrobial activity. When the electrochemical degradation of CIP was investigated using a single-sided boron-doped diamond (BDD) anode, its performance in TOC removal was similar to that of the Ti-Pt/ß-PbO2 anode; considering the higher oxidation power of BDD, the surprisingly good comparative performance of the Ti-Pt/ß-PbO2 anode was ascribed to significantly better hydrodynamic conditions attained in the filter-press reactor used with this electrode. Five initial oxidation intermediates were identified by LC-MS/MS and completely removed after 4 h of electrolysis; since they have also been determined in other degradation processes, there must be similarities in the involved oxidation mechanisms. Five terminal oxidation intermediates (acetic, formic, oxamic, propionic, and succinic acids) were identified by LC-UV and all of them (except acetic acid) were removed after 10 h of electrolysis.


Asunto(s)
Antibacterianos/análisis , Ciprofloxacina/análisis , Técnicas Electroquímicas/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Antibacterianos/toxicidad , Ciprofloxacina/toxicidad , Técnicas Electroquímicas/instrumentación , Electrodos , Escherichia coli/efectos de los fármacos , Cinética , Modelos Teóricos , Oxidación-Reducción , Contaminantes Químicos del Agua/toxicidad , Purificación del Agua/instrumentación
5.
Chemosphere ; 206: 674-681, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29783052

RESUMEN

The role of the supporting electrolyte - SE (Na2SO4; NaCl; Na2CO3; NaNO3; Na3PO4 - 0.1 M ionic strength) in the galvanostatic (10 mA cm-2) electrochemical degradation of the fluoroquinolone antibiotic enrofloxacin (ENRO; 100 mg L-1) using a filter-press flow cell with a boron-doped diamond anode was investigated (flow rate, solution volume, and temperature were kept fixed at 420 L h-1, 1.0 L, and 25 °C, respectively). The electrochemical degradation performance with the different SEs was assessed by following up [ENRO], total organic carbon concentration (TOC), oxidation intermediates (detected by LC and LC-QqTOF), and antimicrobial activity towards Escherichia coli as the electrolyses progressed. With NaCl as SE, complete removal of ENRO was attained ∼10 times faster than with the other salts. The determination of terminal oxidation intermediates (short-chain carboxylic acids) produced during the electrolyses allowed concluding that their nature and number is indeed affected by the salt used as SE, most probably due to distinct electrogenerated oxidants. With NaCl, the antimicrobial activity of the electrolyzed solution decreased gradually (to ∼20%) from 8 to 16 h of electrolysis due to the cleavage of the fluoroquinolone structure. On the other hand, with Na2SO4, Na2CO3 and NaNO3 as SEs the growth of Escherichia coli cells was observed only after ∼14 h, whereas it was completely inhibited with Na3PO4. Clearly, the electrooxidation and mineralization of ENRO is strongly affected by the SEs used, which determine the degradation mechanism and, consequently, the removal rates of the solution's organic load and antimicrobial activity.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos/química , Electrólitos/química , Fluoroquinolonas/química , Boro/química , Electrodos , Enrofloxacina , Cinética , Oxidación-Reducción
6.
PLoS One ; 11(9): e0162892, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27668862

RESUMEN

This paper reports the investigation of the chiral interaction between 3,4-methylenedioxy-methamphetamine (MDMA) enantiomers and an immobilized polysaccharide-based chiral phase. For that, suspended-state high-resolution magic angle spinning nuclear magnetic resonance spectroscopy (1H HR-MAS NMR) was used. 1H HR-MAS longitudinal relaxation time and Saturation Transfer Difference (STD NMR) titration experiments were carried out yielding information at the molecular level of the transient diastereoisomeric complexes of MDMA enantiomers and the chiral stationary phase. The interaction of the enantiomers takes place through the aromatic moiety of MDMA and the aromatic group of the chiral selector by π-π stacking for both enantiomers; however, a stronger interaction was observed for the (R)-enantiomer, which is the second one to elute at the chromatographic conditions.

7.
J Chromatogr A ; 1333: 87-98, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24548434

RESUMEN

Antibiotics are a therapeutic class widely found in environmental matrices and extensively studied due to its persistence and implications for multi-resistant bacteria development. This work presents an integrated approach of analytical multi-techniques on assessing biodegradation of fluorinated antibiotics at a laboratory-scale microcosmos to follow removal and formation of intermediate compounds. Degradation of four fluoroquinolone antibiotics, namely Ofloxacin (OFL), Norfloxacin (NOR), Ciprofloxacin (CPF) and Moxifloxacin (MOX), at 10 mg L(-1) using a mixed bacterial culture, was assessed for 60 days. The assays were followed by a developed and validated analytical method of LC with fluorescence detection (LC-FD) using a Luna Pentafluorophenyl (2) 3 µm column. The validated method demonstrated good selectivity, linearity (r(2)>0.999), intra-day and inter-day precisions (RSD<2.74%) and accuracy. The quantification limits were 5 µg L(-1) for OFL, NOR and CPF and 20 µg L(-1) for MOX. The optimized conditions allowed picturing metabolites/transformation products formation and accumulation during the process, stating an incomplete mineralization, also shown by fluoride release. OFL and MOX presented the highest (98.3%) and the lowest (80.5%) extent of degradation after 19 days of assay, respectively. A representative number of samples was selected and analyzed by LC-MS/MS with triple quadrupole and the molecular formulas were confirmed by a quadruple time of flight analyzer (QqTOF). Most of the intermediates were already described as biodegradation and/or photodegradation products in different conditions; however unknown metabolites were also identified. The microbial consortium, even when exposed to high levels of FQ, presented high percentages of degradation, never reported before for these compounds.


Asunto(s)
Antibacterianos/análisis , Cromatografía Liquida/métodos , Fluoroquinolonas/análisis , Espectrometría de Masas en Tándem/métodos , Antibacterianos/química , Antibacterianos/metabolismo , Compuestos Aza/química , Compuestos Aza/metabolismo , Biotransformación , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Fluoroquinolonas/química , Fluoroquinolonas/metabolismo , Moxifloxacino , Norfloxacino/química , Norfloxacino/metabolismo , Ofloxacino/química , Ofloxacino/metabolismo , Fotólisis , Quinolinas/química , Quinolinas/metabolismo
8.
Water Res ; 41(1): 55-62, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17084878

RESUMEN

The oxidation of atrazine (ATZ) was studied in the presence of hydrogen peroxide (H(2)O(2)) and ferrihydrite at different concentrations and pHs. The rate of ATZ oxidation increased with H(2)O(2) concentration and is independent of pH ranging from 4 to 8. However, at pH 3 an increase of ten times in the rate of ATZ oxidation was observed due to the mineral dissolution. The decomposition rate of H(2)O(2) was three times higher at pH 8 than 3 and increased with increase of both H(2)O(2) and ferrihydrite concentrations. The results indicate that ferrihydrite controls oxidation of ATZ by H(2)O(2) in two different ways: (i) mineral dissolution at low pH allowing the Fenton reaction to proceed in solution and (ii) surface-mediated decomposition of H(2)O(2) producing non-reactive oxygen species in particular at higher pH. Three degradation products (desethylatrazine, desisopropylatrazine, and 2-hydroxyatrazine) were identified and corroborate with a Fenton reaction taking place in solution.


Asunto(s)
Atrazina/metabolismo , Compuestos Férricos/metabolismo , Peróxido de Hidrógeno/metabolismo , Hierro/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA