Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Technol ; 43(13): 1935-1952, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-33252309

RESUMEN

In this study, a comparison between the biosorption performance of six fruit and vegetable peels, namely kiwifruit (KP), apple, banana, cucumber, orange and potato immobilized on sodium alginate beads has been made. Inductively coupled plasma coupled with mass spectroscopy was used for measuring the concentration of metal ions in solution before and after biosorption. A range of kinetic models were also applied to the biosorption batch data. The results showed that biosorption percentage of the ions were different on the various beads. For example, the decreasing order of biosorption by one KP bead at equilibrium was Cd > Cu > Hg > Ni > Pb > Cr > As, with approximately 92%, 84%, 80%, 75%, 67%, 34%, and 17% simultaneous removal of ions, respectively. The fastest biosorption was seen with Cd and Pb, as both reached equilibrium by 24 h. Equilibrium time of all other ions occurred by 48 h. While all beads in their unmodified form were suitable for the removal of divalent cations, KP bead showed significantly higher removal of the anion hexavalent Cr. Biosorption of Cd, Hg and Ni was limited by both pseudo-first order and pseudo-second order reaction rates. For Cr and Cu, the reaction was controlled by film diffusion and pseudo-first order rates. At a higher solution concentration, the preference of ions biosorbed as well as their percentage removed changed. Overall, the results indicated that KP beads show promise as a cost-effective method for removing toxic ions by biosorption, especially hexavalent chromium from drinking water.


Asunto(s)
Mercurio , Metales Pesados , Contaminantes Químicos del Agua , Adsorción , Cadmio/análisis , Frutas/química , Concentración de Iones de Hidrógeno , Iones , Cinética , Plomo , Verduras , Contaminantes Químicos del Agua/análisis
2.
Environ Technol ; 42(16): 2461-2477, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31825744

RESUMEN

Cucumber peel as a bead was examined for its ability to remove heavy metals from drinking water. Deionised laboratory water was spiked with seven toxic ions namely, arsenic, cadmium, chromium, copper, mercury, lead and nickel at 0.1 mg L-1 and kinetic studies were performed over 72 h. Kinetic data were modelled using film diffusion, pore diffusion, Weber-Morris, pseudo-first-order, pseudo-second-order and Elovich equation. The bead surface was imaged before and after biosorption using scanning electron microscopy coupled with energy dispersive spectroscopy (EDS). Results indicated that different ions contained in a multi-ion solution were biosorbed by different mechanisms and at different rates. Equilibrium biosorption for Cd, Hg and Ni was ∼91, 90 and 67%, respectively, at 24 h. These ions diffused through the pores of the bead, as they were not identified by EDS, and their biosorption increased with an increase in temperature. The least biosorbed ions were As and Cr with ∼21 and 17% equilibrium biosorption, respectively. The removal of only Cu, Hg, Pb and Ni was pH-dependent. Cucumber peel beads removed all spiked ions from real drinking water collected near the Macraes gold mine in New Zealand, but the biosorption percentage was lower for Cd, Cu, Pb and Ni compared to spiked deionised laboratory water. The results of this study suggest that cucumber peel when immobilised on a sodium alginate bead can be used as a potential biosorbent for the removal of multiple toxic ions from drinking water and their use warrants further examination in contaminated drinking water.


Asunto(s)
Cucumis sativus , Agua Potable , Contaminantes Químicos del Agua , Adsorción , Cadmio , Descontaminación , Concentración de Iones de Hidrógeno , Iones , Cinética , Nueva Zelanda , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA