Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Plant Mol Biol ; 89(1-2): 67-81, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26260516

RESUMEN

Kelch repeat-containing proteins are involved in diverse cellular processes, but only a small subset of plant kelch proteins has been functionally characterized. Thiocyanate-forming protein (TFP) from field-penny cress, Thlaspi arvense (Brassicaceae), is a representative of specifier proteins, a group of kelch proteins involved in plant specialized metabolism. As components of the glucosinolate-myrosinase system of the Brassicaceae, specifier proteins determine the profile of bioactive products formed when plant tissue is disrupted and glucosinolates are hydrolyzed by myrosinases. Here, we describe the crystal structure of TaTFP at a resolution of 1.4 Å. TaTFP crystallized as homodimer. Each monomer forms a six-blade ß-propeller with a wide "top" and a narrower "bottom" opening with distinct strand-connecting loops protruding far beyond the lower propeller surface. Molecular modeling and mutational analysis identified residues for glucosinolate aglucone and Fe(2+) cofactor binding within these loops. As the first experimentally determined structure of a plant kelch protein, the crystal structure of TaTFP not only enables more detailed mechanistic studies on glucosinolate breakdown product formation, but also provides a new basis for research on the diverse roles and mechanisms of other kelch proteins in plants.


Asunto(s)
Glucosinolatos/metabolismo , Proteínas de Plantas/química , Thlaspi/fisiología , Dominio Catalítico , Cristalografía por Rayos X , Simulación del Acoplamiento Molecular , Proteínas de Plantas/fisiología , Estructura Terciaria de Proteína , Tiocianatos/metabolismo , Thlaspi/metabolismo
2.
Anal Biochem ; 421(2): 797-8, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22230284

RESUMEN

The fusion of DNA fragments is becoming increasingly more important. The ability to work without being constrained by restriction sites enables DNA fusion to be applied to a much broader range of fragments. Therefore, we describe a simplified polymerase chain reaction (PCR)-based method for fusion of DNA fragments in one step. In a single PCR, two templates, an overlapping primer, and template-specific forward and reverse primers are used. After a few cycles, the fusion DNA is assembled and is amplified. The ratio of overlapping primer to forward/reverse primers and template DNA is essential for the success of the reaction.


Asunto(s)
Fusión Artificial Génica/métodos , ADN/biosíntesis , Reacción en Cadena de la Polimerasa/métodos , Genes de Plantas
3.
ACS Chem Biol ; 7(1): 226-34, 2012 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-22004291

RESUMEN

Two similar enzymes with different biosynthetic function in one species have evolved to catalyze two distinct reactions. X-ray structures of both enzymes help reveal their most important differences. The Rauvolfia alkaloid biosynthetic network harbors two O-glucosidases: raucaffricine glucosidase (RG), which hydrolyses raucaffricine to an intermediate downstream in the ajmaline pathway, and strictosidine glucosidase (SG), which operates upstream. RG converts strictosidine, the substrate of SG, but SG does not accept raucaffricine. Now elucidation of crystal structures of RG, inactive RG-E186Q mutant, and its complexes with ligands dihydro-raucaffricine and secologanin reveals that it is the "wider gate" of RG that allows strictosidine to enter the catalytic site, whereas the "slot-like" entrance of SG prohibits access by raucaffricine. Trp392 in RG and Trp388 in SG control the gate shape and acceptance of substrates. Ser390 directs the conformation of Trp392. 3D structures, supported by site-directed mutations and kinetic data of RG and SG, provide a structural and catalytic explanation of substrate specificity and deeper insights into O-glucosidase chemistry.


Asunto(s)
Glucosidasas/metabolismo , Proteínas de Plantas/metabolismo , Rauwolfia/enzimología , Alcaloides de la Vinca/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Cristalografía por Rayos X , Evolución Molecular , Glucosidasas/química , Glucósidos Iridoides/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Unión Proteica , Rauwolfia/química , Serina/química , Serina/metabolismo , Especificidad por Sustrato , Triptófano/química , Triptófano/metabolismo
4.
Plant Physiol Biochem ; 46(3): 340-55, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18280746

RESUMEN

Strictosidine synthase (STR; EC 4.3.3.2) plays a key role in the biosynthesis of monoterpenoid indole alkaloids by catalyzing the Pictet-Spengler reaction between tryptamine and secologanin, leading exclusively to 3alpha-(S)-strictosidine. The structure of the native enzyme from the Indian medicinal plant Rauvolfia serpentina represents the first example of a six-bladed four-stranded beta-propeller fold from the plant kingdom. Moreover, the architecture of the enzyme-substrate and enzyme-product complexes reveals deep insight into the active centre and mechanism of the synthase highlighting the importance of Glu309 as the catalytic residue. The present review describes the 3D-structure and function of R. serpentina strictosidine synthase and provides a summary of the strictosidine synthase substrate specificity studies carried out in different organisms to date. Based on the enzyme-product complex, this paper goes on to describe a rational, structure-based redesign of the enzyme, which offers the opportunity to produce novel strictosidine derivatives which can be used to generate alkaloid libraries of the N-analogues heteroyohimbine type. Finally, alignment studies of functionally expressed strictosidine synthases are presented and the evolutionary aspects of sequence- and structure-related beta-propeller folds are discussed.


Asunto(s)
Liasas de Carbono-Nitrógeno/metabolismo , Alcaloides de Triptamina Secologanina/metabolismo , Liasas de Carbono-Nitrógeno/química , Estructura Molecular , Conformación Proteica , Especificidad por Sustrato , Alcaloides de la Vinca/química , Alcaloides de la Vinca/metabolismo
5.
Chem Biol ; 14(9): 979-85, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17884630

RESUMEN

The highly substrate-specific strictosidine synthase (EC 4.3.3.2) catalyzes the biological Pictet-Spengler condensation between tryptamine and secologanin, leading to the synthesis of about 2000 monoterpenoid indole alkaloids in higher plants. The crystal structure of Rauvolfia serpentina strictosidine synthase (STR1) in complex with strictosidine has been elucidated here, allowing the rational site-directed mutation of the active center of STR1 and resulting in modulation of its substrate acceptance. Here, we report on the rational redesign of STR1 by generation of a Val208Ala mutant, further describing the influence on substrate acceptance and the enzyme-catalyzed synthesis of 10-methyl- and 10-methoxystrictosidines. Based on the addition of strictosidine to a crude strictosidine glucosidase preparation from Catharanthus cells, a combined chemoenzymatic approach to generating large alkaloid libraries for future pharmacological screenings is presented.


Asunto(s)
Liasas de Carbono-Nitrógeno/química , Liasas de Carbono-Nitrógeno/genética , Evaluación Preclínica de Medicamentos/métodos , Alcaloides Indólicos/química , Ingeniería de Proteínas/métodos , Alcaloides de la Vinca/química , Cristalografía por Rayos X , Estructura Molecular , Mutagénesis Sitio-Dirigida , Mutación Missense , Proteínas de Plantas , Unión Proteica/genética , Conformación Proteica , Especificidad por Sustrato/genética
6.
Plant Cell ; 19(9): 2886-97, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17890378

RESUMEN

Strictosidine beta-D-glucosidase (SG) follows strictosidine synthase (STR1) in the production of the reactive intermediate required for the formation of the large family of monoterpenoid indole alkaloids in plants. This family is composed of approximately 2000 structurally diverse compounds. SG plays an important role in the plant cell by activating the glucoside strictosidine and allowing it to enter the multiple indole alkaloid pathways. Here, we report detailed three-dimensional information describing both native SG and the complex of its inactive mutant Glu207Gln with the substrate strictosidine, thus providing a structural characterization of substrate binding and identifying the amino acids that occupy the active site surface of the enzyme. Structural analysis and site-directed mutagenesis experiments demonstrate the essential role of Glu-207, Glu-416, His-161, and Trp-388 in catalysis. Comparison of the catalytic pocket of SG with that of other plant glucosidases demonstrates the structural importance of Trp-388. Compared with all other glucosidases of plant, bacterial, and archaeal origin, SG's residue Trp-388 is present in a unique structural conformation that is specific to the SG enzyme. In addition to STR1 and vinorine synthase, SG represents the third structural example of enzymes participating in the biosynthetic pathway of the Rauvolfia alkaloid ajmaline. The data presented here will contribute to deciphering the structure and reaction mechanism of other higher plant glucosidases.


Asunto(s)
Glucosidasas/química , Rauwolfia/enzimología , Alcaloides de Triptamina Secologanina/metabolismo , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Glucosidasas/metabolismo , Ácido Glutámico/genética , Glutamina/genética , Alcaloides Indólicos/química , Alcaloides Indólicos/metabolismo , Cinética , Ligandos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/metabolismo , Estructura Secundaria de Proteína , Alcaloides de Triptamina Secologanina/química , Especificidad por Sustrato , Alcaloides de la Vinca/química , Alcaloides de la Vinca/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-16511316

RESUMEN

Raucaffricine glucosidase (RG) is an enzyme that is specifically involved in the biosynthesis of indole alkaloids from the plant Rauvolfia serpentina. After heterologous expression in Escherichia coli cells, crystals of RG were obtained by the hanging-drop vapour-diffusion technique at 293 K with 0.3 M ammonium sulfate, 0.1 M sodium acetate pH 4.6 buffer and 11% PEG 4000 as precipitant. Crystals belong to space group I222 and diffract to 2.30 A, with unit-cell parameters a = 102.8, b = 127.3, c = 215.8 A.


Asunto(s)
Glucosidasas/química , Clonación Molecular , Cristalización/métodos , Cristalografía por Rayos X , Escherichia coli/metabolismo , Glucosidasas/biosíntesis , Glucosidasas/aislamiento & purificación , Rauwolfia/enzimología
9.
Biochim Biophys Acta ; 1747(1): 89-92, 2005 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-15680242

RESUMEN

Strictosidine beta-D-glucosidase, a plant enzyme initiating biosynthetic pathways to about 2000 monoterpenoid indole alkaloids with an extremely large number of various carbon skeletons, has been functionally expressed in Escherichia coli and purified to homogeneity in mg scale. Crystals suitable for X-ray analysis were found by robot-mediated screening. Using the hanging-drop technique, optimum conditions were 0.3 M ammonium sulfate, 0.1 M sodium acetate, pH 4.6 and PEG 4000 (10%) as precipitant buffer. The crystals of strictosidine glucosidase belong to the space group P42(1)2 with unit cell dimensions of a=157.63, c=103.59 A and diffract X-rays to 2.48-A resolution.


Asunto(s)
Catharanthus/enzimología , Glucosidasas/química , Alcaloides Indólicos/metabolismo , Clonación Molecular , Cristalización , Cristalografía por Rayos X , Escherichia coli/enzimología , Escherichia coli/genética , Glucosidasas/genética , Glucosidasas/aislamiento & purificación , Glucosidasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA