Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(17)2024 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-39274730

RESUMEN

The green synthesis of ZnO NPs is becoming increasingly valued for its cost-effectiveness and environmental benefits. This study successfully synthesized hexagonal ZnO NPs using a combination of clove (Syzygium aromaticum) and Thymus capitatus extracts. The use of both extracts significantly improved the antibacterial and antioxidant properties of the ZnO NPs. By optimizing synthesis conditions, including ZnCl2 and extract concentrations, hexagonal wurtzite ZnO NPs were produced at room temperature with only drying at 80 °C without high-temperature annealing. The synthesized ZnO NPs exhibited a hexagonal morphology with an average particle size of 160 nm and a crystallite size of 30 nm. Energy-dispersive X-ray spectroscopy (SEM-EDX) confirmed the elemental composition of the ZnO NPs, showing a high carbon content (63.9 wt.%), reflecting the presence of phytochemicals from the extracts coated the ZnO NPs surface. The UV-Vis spectrum revealed an absorption peak at 370 nm and a bandgap energy of 2.8 eV due to lattice defects caused by organic impurities. The ZnO NPs demonstrated exceptional antioxidant activity, with a DPPH radical scavenging rate of 95.2%. They also exhibited strong antibacterial activity against both Gram-positive and Gram-negative bacteria, with inhibition zones of 25 mm against Bacillus subtilis, 26 mm against Escherichia coli, 24 mm against Salmonella typhimurium, 22 mm against Klebsiella pneumoniae, 21 mm against Staphylococcus aureus, 20 mm against Staphylococcus hominis, and 18 mm against Bacillus subtilis at 200 ppm. Furthermore, significant antifungal activity was observed against Candida albicans, with an inhibition zone of 35 mm at the same concentration. These findings underscore the effectiveness of using combined plant extracts for producing ZnO NPs with controlled morphology and enhanced biological properties, highlighting their potential for various biomedical applications.

2.
Front Bioeng Biotechnol ; 12: 1397587, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39224192

RESUMEN

In recent years, ion-selective optodes (ISOs) have remarkably progressed, driven by innovative modern designs and nanomaterial integration. This review explored the development of modern ISO by describing state-of-the-art strategies to improve their sensitivity, selectivity, and real-time monitoring capacity. The review reported the traditional membrane based-optodes, and investigated the latest research, current design principles, and the use of essential components, such as ionophores, indicator dyes, polymer membranes, and nanomaterials, in ISO fabrication. Special attention was given to nanomaterials (e.g., quantum dots, polymer dots, nanospheres, nanorods and nanocapsules) and particularly on how rare earth elements can further enhance their potential. It also described innovative ISO designs, including wearable optodes, smartphone-based optodes, and disposable paper-based optodes. As the pursuit of highly sensitive, selective, and adaptable ion sensing devices continues, this summary of the current knowledge sets the stage for upcoming innovations and applications in different domains (pharmaceutical formulations, medical diagnosis, environmental monitoring, and industrial applications).

3.
Front Chem ; 12: 1417407, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39144698

RESUMEN

Introduction: Bone tissue engineering seeks innovative materials that support cell growth and regeneration. Electrospun nanofibers, with their high surface area and tunable properties, serve as promising scaffolds. This study explores the incorporation of flaxseed extract, rich in polyphenolic compounds, into polyvinyl alcohol (PVA) nanofibers to improve their application in bone tissue engineering. Methods: High-performance liquid chromatography (HPLC) identified ten key compounds in flaxseed extract, including polyphenolic acids and flavonoids. PVA nanofibers were fabricated with 30 wt.% flaxseed extract (P70/E30) via electrospinning. We optimized characteristics like diameter, hydrophilicity, swelling behavior, and hydrolytic degradation. MG-63 osteoblast cultures were used to assess scaffold efficacy through cell adhesion, proliferation, viability (MTT assay), and differentiation. RT-qPCR measured expression of osteogenic genes RUNX2, COL1A1, and OCN. Results: Flaxseed extract increased nanofiber diameter from 252 nm (pure PVA) to 435 nm (P70/E30). P70/E30 nanofibers showed higher cell viability (102.6% vs. 74.5% for pure PVA), although adhesion decreased (151 vs. 206 cells/section). Notably, P70/E30 enhanced osteoblast differentiation, significantly upregulating RUNX2, COL1A1, and OCN genes. Discussion: Flaxseed extract incorporation into PVA nanofibers enhances bone tissue engineering by boosting osteoblast proliferation and differentiation, despite reduced adhesion. These properties suggest P70/E30's potential for regenerative medicine, emphasizing scaffold optimization for biomedical applications.

4.
Pharmaceuticals (Basel) ; 17(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39204087

RESUMEN

This study explored the therapeutic efficacy of Helianthemum lippii and silver nanoparticles (Ag NPs) synthesized using a H. lippii extract to alleviate cadmium-induced nephrotoxicity in Wistar rats. Sub-acute toxicity assessments of H. lippii (100 mg/kg, 1000 mg/kg, and 4000 mg/kg) and Ag NPs (2 mg/kg and 10 mg/kg) did not find any significant difference, compared with untreated control rats (n = 3 animals/group). Then, the adult Wistar rats were divided into one control (untreated/unexposed) and six experimental groups (n = 5/group): Ag NPs alone, H. lippii alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, exposure to CdCl2 for 35 days followed by treatment with 0.1 mg/kg/day Ag NPs (intraperitoneal injection) and/or 100 mg/kg/day H. lippii by gavage for 15 days. In the CdCl2-exposed group, body weight decreased; urea, creatinine, and uric acid concentrations increased (p < 0.05 vs. control), indicative of nephrotoxicity, antioxidant defenses (SOD, GSH, and CAT) were reduced, and malondialdehyde concentration increased. Moreover, the kidney's architecture in CdCl2-exposed rats was altered: fibrosis, inflammatory cell infiltration, glomerular destruction, and tubular dilatation. Treatment with H. lippii and/or Ag NPs after CdCl2 exposure improved some of the renal function and architecture alterations induced by CdCl2, and also increased body weight. This study underscores the potential therapeutic applications of H. lippii and Ag NPs to decrease oxidative stress and promote xenobiotic detoxification, in line with the growing emphasis on environmentally conscious practices in scientific research and healthcare.

5.
Front Chem ; 12: 1353524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38961857

RESUMEN

Chitosan, a biopolymer obtained from chitin, is known for its remarkable adsorption abilities for dyes, drugs, and fats, and its diverse array of antibacterial characteristics. This study explores the extraction and characterization of chitosan from the mycelium of Amanita phalloides. The moisture content, ash content, water binding capacity, fat binding capacity, and degree of deacetylation of the extracted chitosan were determined. The chitosan exhibited a high yield of 70%, crystallinity of 49.07%, a degree of deacetylation of 86%, and potent antimicrobial properties against both Gram-negative and Gram-positive bacteria. The study also examined the adsorption capabilities of chitosan to remove methylene blue (MB) dye by analysing specific factors like pH, reaction time, and MB concentration using the response surface model. The highest degree of MB dye removal was 91.6% at a pH of 6, a reaction time of around 60 min and an initial dye concentration of 16 ppm. This experimental design can be applied for chitosan adsorption of other organic compounds such as dyes, proteins, drugs, and fats.

6.
Front Bioeng Biotechnol ; 12: 1400542, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39007052

RESUMEN

Introduction: This study explores the therapeutic potential of silver nanoparticles (Ag NPs) synthesized using a Helianthemum lippii extract in mitigating cadmium-induced hepatotoxicity in Wistar rats. Given the increasing environmental and health concerns associated with cadmium exposure, novel and eco-friendly therapeutic strategies are essential. Methods: Ag NPs were characterized using X-ray diffraction, UV-Vis spectrometry, and energy-dispersive X-ray spectroscopy with scanning electron microscopy, confirming their formation with a cubic crystal structure and particle sizes ranging from 4.81 to 12.84 nm. A sub-acute toxicity study of Ag NPs (2 mg/kg and 10 mg/kg) was conducted, showing no significant difference compared to untreated control rats (n = 3 animals/group). Subsequently, adult Wistar rats (n = 5/group) were divided into a control group and three experimental groups: Ag NPs alone, exposure to 50 mg/kg CdCl2 in drinking water for 35 days, and CdCl2 exposure followed by 0.1 mg/kg/day Ag NPs intraperitoneally for 15 days. Results: In the CdCl2-exposed group, there was a significant decrease in body weight and increases in alanine and aspartate transaminase levels (p < 0.05 vs. control), indicating hepatotoxicity. Additionally, antioxidant defenses were decreased, and malondialdehyde levels were elevated. Liver histology revealed portal fibrosis, inflammation, necrosis, sinusoid and hepatic vein dilation, and cytoplasmic vacuolations. Treatment with Ag NPs post-CdCl2 exposure mitigated several adverse effects on liver function and architecture and improved body weight. Discussion: This study demonstrates the efficacy of Ag NPs synthesized via a green method in reducing cadmium-induced liver damage. These findings support the potential of Ag NPs in therapeutic applications and highlight the importance of sustainable and eco-friendly nanoparticle synthesis methods. By addressing both toxicity concerns and therapeutic efficacy, this research aligns with the growing emphasis on environmentally conscious practices in scientific research and healthcare.

8.
Artículo en Inglés | MEDLINE | ID: mdl-38700618

RESUMEN

This study assessed the efficacy of an Ammodaucus leucotrichus seed extract to treat rheumatoid arthritis in rat models of this disease. Rheumatoid arthritis was induced in rats using two methods: immunization with 100 µL of Complete Freund Adjuvant (CFA) and immunization with 100 µL of a 3 mg/ml solution of type II collagen (CII) from chicken cartilage. The therapeutic potential of the extract was assessed at different doses (150, 300, and 600 mg/kg/day for 21 days in the CII-induced arthritis model and for 14 days in the CFA-induced arthritis model) and compared with methotrexate (MTX; 0.2 mg/kg for the same periods), a commonly used drug for rheumatoid arthritis treatment in humans. In both models (CII-induced arthritis and CFA-induced arthritis), walking distance, step length, intra-step distance and footprint area were improved following treatment with the A. leucotrichus seed extract (all concentrations) and MTX compared with untreated animals. Both treatments increased the serum concentration of glutathione and reduced that of complement C3, malondialdehyde and myeloperoxidase. Radiographic data and histological analysis indicated that cartilage destruction was reduced already with the lowest dose of the extract (100 mg/kg/dose) in both models. These results show the substantial antiarthritic potential of the A. leucotrichus seed extract, even at the lowest dose, suggesting that it may be a promising alternative therapy for rheumatoid arthritis and joint inflammation. They also emphasize its efficacy at various doses, providing impetus for more research on this extract as a potential therapeutic agent for arthritis.

9.
Front Chem ; 12: 1367552, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38449480

RESUMEN

Ephedra alata leaf extracts have therapeutic properties and contain various natural compounds known as phytochemicals. This study assessed the phytochemical content and antioxidant effects of a Ephedra alata leaf extract, as well as zinc oxide (ZnO) nanoparticle production. The extract contained phenolic acids, including vanillic acid, chlorogenic acid, gallic acid, p-coumaric acid, vanillin and rutin. Its total phenolic content and total flavonoid content were 48.7 ± 0.9 mg.g-1 and 1.7 ± 0.4 mg.g-1, respectively. The extract displayed a DPPH inhibition rate of 70.5%, total antioxidant activity of 49.5 ± 3.4 mg.g-1, and significant antimicrobial activity toward Gram-positive and negative bacteria. The synthesized ZnO nanoparticles had spherical shape, crystallite size of 25 nm, particle size between 5 and 30 nm, and bandgap energy of 3.3 eV. In specific conditions (90 min contact time, pH 7, and 25°C), these nanoparticles efficiently photodegraded 87% of methylene blue, suggesting potential applications for sustainable water treatment and pollution control.

10.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38543170

RESUMEN

Ammodaucus leucotrichus exhibits promising pharmacological activity, hinting at anti-inflammatory and anti-arthritic effects. This study investigated seed extracts from Ammodaucus leucotrichus using methanol and n-hexane, focusing on anti-inflammatory and anti-arthritic properties. The methanol extract outperformed the n-hexane extract and diclofenac, a reference anti-inflammatory drug, in trypsin inhibition (85% vs. 30% and 64.67% at 125 µg/mL). For trypsin inhibition, the IC50 values were 82.97 µg/mL (methanol), 202.70 µg/mL (n-hexane), and 97.04 µg/mL (diclofenac). Additionally, the n-hexane extract surpassed the methanol extract and diclofenac in BSA (bovine serum albumin) denaturation inhibition (90.4% vs. 22.0% and 51.4% at 62.5 µg/mL). The BSA denaturation IC50 values were 14.30 µg/mL (n-hexane), 5408 µg/mL (methanol), and 42.30 µg/mL (diclofenac). Gas chromatography-mass spectrometry (GC-MS) revealed 59 and 58 secondary metabolites in the methanol and n-hexane extracts, respectively. The higher therapeutic activity of the methanol extract was attributed to hydroxyacetic acid hydrazide, absent in the n-hexane extract. In silico docking studies identified 28 compounds with negative binding energies, indicating potential trypsin inhibition. The 2-hydroxyacetohydrazide displayed superior inhibitory effects compared to diclofenac. Further mechanistic studies are crucial to validate 2-hydroxyacetohydrazide as a potential drug candidate for rheumatoid arthritis treatment.

11.
Front Chem ; 12: 1330810, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38370094

RESUMEN

This study introduces environmentally-friendly nanocellulose-based membranes for AZO dye (methylene blue, MB) removal from wastewater. These membranes, made of cellulose nanocrystals (CNCs), carboxymethyl cellulose (CMC), zeolite, and citric acid, aim to offer eco-friendly water treatment solutions. CNCs, obtained from sugarcane bagasse, act as the foundational material for the membranes. The study aims to investigate both the composition of the membranes (CMC/CNC/zeolite/citric acid) and the critical adsorption factors (initial MB concentration, contact time, temperature, and pH) that impact the removal of the dye. After systematic experimentation, the optimal membrane composition is identified as 60% CNC, 15% CMC, 20% zeolites, and 5% citric acid. This composition achieved a 79.9% dye removal efficiency and a 38.3 mg/g adsorption capacity at pH 7. The optimized membrane exhibited enhanced MB dye removal under specific conditions, including a 50 mg adsorbent mass, 50 ppm dye concentration, 50 mL solution volume, 120-min contact time, and a temperature of 25°C. Increasing pH from neutral to alkaline enhances MB dye removal efficiency from 79.9% to 94.5%, with the adsorption capacity rising from 38.3 mg/g to 76.5 mg/g. The study extended to study the MB adsorption mechanisms, revealing the chemisorption of MB dye with pseudo-second-order kinetics. Chemical thermodynamic experiments determine the Freundlich isotherm as the apt model for MB dye adsorption on the membrane surface. In conclusion, this study successfully develops nanocellulose-based membranes for efficient AZO dye removal, contributing to sustainable water treatment technologies and environmental preservation efforts.

12.
Materials (Basel) ; 16(14)2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37512323

RESUMEN

Insects are a readily available source of chitosan due to their high reproductive rates, ease of breeding, and resistance to changes in their ecosystem. This study aimed to extract chitosan from several widespread insects: Blaps lethifera (CS-BL), Pimelia fernandezlopezi (CS-PF), and Musca domestica (CS-MD). The study was also extended to using the obtained chitosans in removing methylene blue dye (MB) from wastewater. The source of the chitosan, the initial concentration of MB dye, and the reaction time were chosen as the working parameters. The experiments were designed using a central composite design (CCD) based on the dye removal efficiency as the response variable. The experimental work and statistical calculation of the CCD showed that the dye removal efficiency ranged from 35.9% to 88.7% for CS-BL, from 18.8% to 47.1% for CS-PF, and from 10.3% to 29.0% for CS-MD at an initial MB concentration of 12.79 mg/L. The highest methylene blue dye removal efficiency was 88.7% for CS-BL at a reaction time of 120 min. This indicates that the extraction of chitosan from insects (Blaps lethifera) and its application in dye removal is a promising, environmentally friendly, economical, biodegradable, and cost-effective process. Furthermore, the CCD is a statistical experimental design technique that can be used to optimize process variables for removing other organic pollutants using chitosan.

13.
Carbohydr Polym ; 317: 121057, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37364949

RESUMEN

Membrane technology is of great interest in various environmental and industrial applications, where membranes are used to separate different mixtures of gas, solid-gas, liquid-gas, liquid-liquid, or liquid-solid. In this context, nanocellulose (NC) membranes can be produced with predefined properties for specific separation and filtration technologies. This review explains the use of nanocellulose membranes as a direct, effective, and sustainable way to solve environmental and industrial problems. The different types of nanocellulose (i.e., nanoparticles, nanocrystals, nanofibers) and their fabrication methods (i.e., mechanical, physical, chemical, mechanochemical, physicochemical, and biological) are discussed. In particular, the structural properties of nanocellulose membranes (i.e., mechanical strength, interactions with various fluids, biocompatibility, hydrophilicity, and biodegradability) are reviewed in relation to membrane performances. Advanced applications of nanocellulose membranes in reverse osmosis (RO), microfiltration (MF), nanofiltration (NF), and ultrafiltration (UF) are highlighted. The applications of nanocellulose membranes offer significant advantages as a key technology for air purification, gas separation, and water treatment, including suspended or soluble solids removal, desalination, or liquid removal using pervaporation membranes or electrically driven membranes. This review will cover the current state of research, future prospects, and challenges in commercializing nanocellulose membranes with respect to membrane applications.

14.
Adv Colloid Interface Sci ; 317: 102920, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37207377

RESUMEN

Hydrogels are excellent water-swollen polymeric materials for use in wearable, implantable, and disposable biosensors. Hydrogels have unique properties such as low cost, ease of preparation, transparency, rapid response to external conditions, biocompatibility and self-adhesion to the skin, flexibility, and strain sensitivity, making them ideal for use in biosensor platforms. This review provides a detailed overview of advanced applications of stimuli-responsive hydrogels in biosensor platforms, from hydrogel synthesis and functionalization for bioreceptor immobilization to several important diagnostic applications. Emphasis is placed on recent advances in the fabrication of ultrasensitive fluorescent and electrically conductive hydrogels and their applications in wearable, implantable, and disposable biosensors for quantitative measurements. Design, modification, and assembly techniques of fluorescent, ionically conductive, and electrically conductive hydrogels to improve performance will be addressed. The advantages and performance improvements of immobilizing bioreceptors (e.g., antibodies, enzymes, and aptamers), and incorporating fluorescent and electrically conductive nanomaterials are described, as are their limitations. Potential applications of hydrogels in implantable, wearable, disposable portable biosensors for quantitative detection of the various bioanalytes (ions, molecules, drugs, proteins, and biomarkers) are discussed. Finally, the global market for hydrogel-based biosensors and future challenges and prospects are discussed in detail.


Asunto(s)
Técnicas Biosensibles , Nanoestructuras , Dispositivos Electrónicos Vestibles , Hidrogeles , Técnicas Biosensibles/métodos , Proteínas , Conductividad Eléctrica
15.
Bioengineering (Basel) ; 10(2)2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36829698

RESUMEN

Over the last few years, biopolymers have attracted great interest in tissue engineering and regenerative medicine due to the great diversity of their chemical, mechanical, and physical properties for the fabrication of 3D scaffolds. This review is devoted to recent advances in synthetic and natural polymeric 3D scaffolds for bone tissue engineering (BTE) and regenerative therapies. The review comprehensively discusses the implications of biological macromolecules, structure, and composition of polymeric scaffolds used in BTE. Various approaches to fabricating 3D BTE scaffolds are discussed, including solvent casting and particle leaching, freeze-drying, thermally induced phase separation, gas foaming, electrospinning, and sol-gel techniques. Rapid prototyping technologies such as stereolithography, fused deposition modeling, selective laser sintering, and 3D bioprinting are also covered. The immunomodulatory roles of polymeric scaffolds utilized for BTE applications are discussed. In addition, the features and challenges of 3D polymer scaffolds fabricated using advanced additive manufacturing technologies (rapid prototyping) are addressed and compared to conventional subtractive manufacturing techniques. Finally, the challenges of applying scaffold-based BTE treatments in practice are discussed in-depth.

16.
Pharmaceutics ; 15(2)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36839746

RESUMEN

Janus particles have emerged as a novel and smart material that could improve pharmaceutical formulation, drug delivery, and theranostics. Janus particles have two distinct compartments that differ in functionality, physicochemical properties, and morphological characteristics, among other conventional particles. Recently, Janus particles have attracted considerable attention as effective particulate drug delivery systems as they can accommodate two opposing pharmaceutical agents that can be engineered at the molecular level to achieve better target affinity, lower drug dosage to achieve a therapeutic effect, and controlled drug release with improved pharmacokinetics and pharmacodynamics. This article discusses the development of Janus particles for tailored and improved delivery of pharmaceutical agents for diabetes treatment and antimicrobial applications. It provides an account of advances in the synthesis of Janus particles from various materials using different approaches. It appraises Janus particles as a promising particulate system with the potential to improve conventional delivery systems, providing a better loading capacity and targeting specificity whilst promoting multi-drugs loading and single-dose-drug administration.

17.
Int J Biol Macromol ; 231: 123316, 2023 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-36682647

RESUMEN

Bacterial nanocellulose (BNC) is a natural polysaccharide produced as extracellular material by bacterial strains and has favorable intrinsic properties for primary use in biomedical applications. In this review, an update on state-of-the art and challenges in BNC production, surface modification and biomedical application is given. Recent insights in biosynthesis allowed for better understanding of governing parameters improving production efficiency. In particular, introduction of different carbon/nitrogen sources from alternative feedstock and industrial upscaling of various production methods is challenging. It is important to have control on the morphology, porosity and forms of BNC depending on biosynthesis conditions, depending on selection of bacterial strains, reactor design, additives and culture conditions. The BNC is intrinsically characterized by high water absorption capacity, good thermal and mechanical stability, biocompatibility and biodegradability to certain extent. However, additional chemical and/or physical surface modifications are required to improve cell compatibility, protein interaction and antimicrobial properties. The novel trends in synthesis include the in-situ culturing of hybrid BNC nanocomposites in combination with organic material, inorganic material or extracellular components. In parallel with toxicity studies, the applications of BNC in wound care, tissue engineering, medical implants, drug delivery systems or carriers for bioactive compounds, and platforms for biosensors are highlighted.


Asunto(s)
Celulosa , Nanocompuestos , Celulosa/química , Bacterias/química , Nanocompuestos/química
18.
Front Chem ; 11: 1342988, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38298761

RESUMEN

This study presents a novel method for synthesizing 1,4-disubstituted 1,2,3-triazole derivatives through a one-pot, multi-component addition reaction using flower-like Cu2O microbeads as a catalyst. The flower-like Cu2O microbeads were synthesized using an aqueous extract of Artimisia Campestris L. This extract demonstrated the capability to reduce and stabilize Cu2O particles during their initial formation, resulting in the formation of a porous flower-like morphology. These Cu2O microbeads exhibit distinctive features, including a cubic close-packed (ccp) crystal structure with an average crystallite size of 22.8 nm, bandgap energy of 2.7 eV and a particle size of 6 µm. Their catalytic activity in synthesizing 1,4-disubstituted 1,2,3-triazole derivatives was investigated through systematic exploration of key parameters such as catalyst quantity (1, 5, 10, 15, 20, and 30 mg/mL), solvent type (dimethylformamide/H2O, ethanol/H2O, dichloromethane/H2O, chloroform, acetone, and dimethyl sulfoxide), and catalyst reusability (four cycles). The Cu2O microbeads significantly increased the product yield from 20% to 85.3%. The green synthesis and outstanding catalytic attributes make these flower-like Cu2O microbeads promising, efficient, and recyclable catalysts for sustainable and effective chemical transformations.

19.
Materials (Basel) ; 15(23)2022 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-36499948

RESUMEN

High-performance hybrid polymer blends can be prepared by blending different types of polymers to improve their properties. However, most polymer blends exhibit phase separation after blending. In this study, polymethylmethacrylate/polyethylene glycol (PMMA/PEG) polymer blends (70/30 and 30/70 w/w) were prepared by solution casting with and without ZnO nanoparticles (NPs) loading. The effect of loading ZnO nanoparticles on blend morphology, UV blocking, glass transition, melting, and crystallization were investigated. Without loading ZnO NP, the PMMA/PEG blends showed phase separation, especially the PEG-rich blend. Loading PMMA/PEG blend with ZnO NPs increased the miscibility of the blend and most of the ZnO NPs dispersed in the PEG phase. The interaction of the ZnO NPs with the blend polymers slightly decreased the intensity of infrared absorption of the functional groups. The UV-blocking properties of the blends increased by 15% and 20%, and the band gap energy values were 4.1 eV and 3.8 eV for the blends loaded with ZnO NPs with a PMMA/PEG ratio of 70/30 and 30/70, respectively. In addition, the glass transition temperature (Tg) increased by 14 °C, the crystallinity rate increased by 15%, the melting (Tm) and crystallization(Tc) temperatures increased by 2 °C and 14 °C, respectively, and the thermal stability increased by 25 °C compared to the PMMA/PEG blends without ZnO NP loading.

20.
World J Microbiol Biotechnol ; 39(1): 19, 2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36409376

RESUMEN

Chitosan (CS) is one of the most abundant biopolymers in nature with superior properties such as biocompatibility, biodegradability, lack of toxicity, antimicrobial activity, acceleration of wound healing, and stimulation of the immune system. In this study, chitosan was extracted from the exoskeletons of beetles (Pimelia payraudi latreille) and then used for the biosynthesis of highly pure MgO NPs and ZnO NPs by a facile greener route. The extracted chitosan exhibited excellent physicochemical properties, including high extraction yield (39%), high degree of deacetylation (90%), low ash content (1%), high fat-binding capacity (366%), and unusual crystallinity index (51%). The MgO NPs and ZnO NPs exhibited a spherical morphology with crystallite sizes of 17 nm and 29 nm, particle sizes of about 20-70 nm and 30-60 nm, and band gap energies of 4.43 and 3.34 eV, respectively. Antibacterial assays showed that the extracted chitosan exhibited high antibacterial activity against Gram-positive and -negative bacteria, while ZnO NPs showed much stronger antibacterial activity against Gram-positive bacteria than against Gram-negative bacteria. For MgO NPs, the antibacterial activity against Gram-positive bacteria was lower than against Gram-negative bacteria. The results suggest that the synthesized MgO NPs and ZnO NPs are excellent antibacterial agents for therapeutic applications.


Asunto(s)
Quitosano , Escarabajos , Óxido de Zinc , Animales , Quitosano/farmacología , Quitosano/química , Óxido de Zinc/farmacología , Óxido de Zinc/química , Óxido de Magnesio/farmacología , Antibacterianos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA