Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; : e202411930, 2024 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-39185589

RESUMEN

We disclose a mediated electrochemical [2+2+2] annulation of alkynes with nitriles, forming substituted pyridines in a single step from low-cost, readily available starting materials. The combination of electrochemistry and a triarylamine redox mediator obviates the requirements of transition metals and additional oxidants. Besides the formation of diarylpyridine moieties via the homocoupling of two identical alkynes, the heterocoupling of two different alkynes depending on their electronic nature is possible, highlighting the unprecedented control of chemoselectivity in this catalytic [2+2+2] process. Mechanistic investigations like cyclic voltammetry and crossover experiments combined with DFT calculations indicate the initial oxidation of an alkyne as the key step leading to the formation of a vinyl radical cation intermediate. The utilization of continuous flow technology proved instrumental for an efficient process scale-up. The utility of the products is exemplified by the synthesis of π-extended molecules, being relevant for material or drug synthesis.

2.
ChemSusChem ; : e202401057, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874542

RESUMEN

Efficient fluorination reactions are key in the late-stage functionalization of complex molecules in medicinal chemistry, in upgrading chemical feedstocks, and in materials science. Radical C(sp3)-H fluorinations using Selectfluor® - one of the most popular fluorination agents - allow to directly engage unactivated precursors under mild photochemical or thermal catalytic conditions. However, H-TEDA(BF4)2 to date is overlooked and discarded as waste, despite comprising 95% of the molecular weight of Selectfluor®. We demonstrate that the addition of H-TEDA(BF4)2 at the start of fluorination reactions markedly promotes their rates and accesses higher overall yields of fluorinated products (~3.3x higher on average across the cases studied) than unpromoted reactions. Several case studies showcase generality of the promotor, for photochemical, photocatalytic and thermal radical fluorination reactions. Detailed mechanistic investigations reveal the key importance of aggregation changes in Selectfluor® and H-TEDA(BF4)2 to fill gaps of understanding in how radical C(sp3)-H fluorination reactions work. This study exemplifies an overlooked reaction waste product being upcycled for a useful application.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA