Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Bacteriol ; 206(7): e0018724, 2024 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-38953643

RESUMEN

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media and when growing in vivo during infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain, supported by the fact that the incorporation of C18:1Δ9 into the membrane increased membrane fluidity in both strains. We show that the incorporation of C18:1Δ9 and its elongation product C20:1Δ11 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol and diglycosyldiacylglycerol lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin. The enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms. IMPORTANCE: We show that Staphylococcus aureus can use its known ability to incorporate exogenous fatty acids to enhance its growth at low temperatures. Individual species of phosphatidylglycerols and diglycosyldiacylglycerols bearing one or two degrees of unsaturation derived from the incorporation of C18:1Δ9 at 12°C are described for the first time. In addition, enhanced production of the carotenoid staphyloxanthin occurs at low temperatures. The studies describe a biochemical reality underlying membrane biophysics. This is an example of homeoviscous adaptation to low temperatures utilizing exogenous fatty acids over the regulation of the biosynthesis of endogenous fatty acids. The studies have likely relevance to food safety in that unsaturated fatty acids may enhance the growth of S. aureus in the food environment.


Asunto(s)
Adaptación Fisiológica , Frío , Ácidos Grasos Insaturados , Lipidómica , Staphylococcus aureus , Staphylococcus aureus/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/efectos de los fármacos , Ácidos Grasos Insaturados/metabolismo , Fluidez de la Membrana , Xantófilas/metabolismo , Lípidos de la Membrana/metabolismo
2.
bioRxiv ; 2024 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-38352554

RESUMEN

It is well established that Staphylococcus aureus can incorporate exogenous straight-chain unsaturated fatty acids (SCUFAs) into membrane phospho- and glyco-lipids from various sources in supplemented culture media, and when growing in vivo in an infection. Given the enhancement of membrane fluidity when oleic acid (C18:1Δ9) is incorporated into lipids, we were prompted to examine the effect of medium supplementation with C18:1Δ9 on growth at low temperatures. C18:1Δ9 supported the growth of a cold-sensitive, branched-chain fatty acid (BCFA)-deficient mutant at 12°C. Interestingly, we found similar results in the BCFA-sufficient parental strain. We show that incorporation of C18:1Δ9 and its elongation product C20:1Δ9 into membrane lipids was required for growth stimulation and relied on a functional FakAB incorporation system. Lipidomics analysis of the phosphatidylglycerol (PG) and diglycosyldiacylglycerol (DGDG) lipid classes revealed major impacts of C18:1Δ9 and temperature on lipid species. Growth at 12°C in the presence of C18:1Δ9 also led to increased production of the carotenoid pigment staphyloxanthin; however, this was not an obligatory requirement for cold adaptation. Enhancement of growth by C18:1Δ9 is an example of homeoviscous adaptation to low temperatures utilizing an exogenous fatty acid. This may be significant in the growth of S. aureus at low temperatures in foods that commonly contain C18:1Δ9 and other SCUFAs in various forms.

3.
J Am Soc Mass Spectrom ; 32(9): 2376-2385, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34014662

RESUMEN

Up to 80% of the fatty acids in Staphylococcus aureus membrane lipids are branched, rather than straight-chain, fatty acids. The branched fatty acids (BCFAs) may have either an even or odd number of carbons, and the branch position may be at the penultimate carbon (iso) or the antepenultimate (anteiso) carbon of the tail. This results in two sets of isomeric fatty acid species with the same number of carbons that cannot be resolved by mass spectrometry. The isomer/isobar challenge is further complicated when the mixture of BCFAs and straight-chain fatty acids (SCFAs) are esterified into diacylated lipids such as the phosphatidylglycerol (PG) species of the S. aureus membrane. No conventional chromatographic method has been able to resolve diacylated lipids containing mixtures of SCFAs, anteiso-odd, iso-odd, and iso-even BCFAs. A major hurdle to method development in this area is the lack of relevant analytical standards for lipids containing BCFA isomers. The diversity of the S. aureus lipidome and its naturally high levels of BCFAs present an opportunity to explore the potential of resolving diacylated lipids containing BCFAs and SFCAs. Using our knowledge of lipid and fatty acid biosynthesis in S. aureus, we have used a stable-isotope-labeling strategy to develop and validate a 30 min C18 reversed-phase liquid chromatography method combined with traveling-wave ion mobility-mass spectrometry to provide resolution of diacylated lipids based on the number of BCFAs that they contain.


Asunto(s)
Cromatografía de Fase Inversa/métodos , Ácidos Grasos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Staphylococcus aureus , Ácidos Grasos/análisis , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Isomerismo , Lipidómica , Staphylococcus aureus/química , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA