Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Bioinspir Biomim ; 15(3): 036009, 2020 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-31995519

RESUMEN

Nowadays, the focus on the development of assistive devices just for people with mobility disorders has shifted towards enhancing physical abilities of able-bodied humans. As a result, the interest in the design of cheap and soft wearable exoskeletons (called exosuits) is distinctly growing. In this paper, a passive lower limb exosuit with two biarticular variable stiffness elements is introduced. These elements are in parallel to the hamstring muscles of the leg and controlled based on a new version of the FMCH (force modulated compliant hip) control framework in which the force feedback is replaced by the length feedback (called LMCH). The main insight to employ leg length feedback is to develop a passive exosuit. Fortunately, similar to FMCH, the LMCH method also predicts human-like balance control behaviours, such as the VPP (virtual pivot point) phenomenon, observed in human walking. Our simulation results, using a neuromuscular model of human walking, demonstrate that this method could reduce the metabolic cost of human walking by 10%. Furthermore, to validate the design and simulation results, a preliminary version of this exosuit comprised of springs with constant stiffness was built. An experiment with eight healthy subjects was performed. We made a comparison between the walking experiments while the exosuit is worn but the springs were slack and those when the appropriate springs were contributing. It shows that passive biarticular elasticity can result in a metabolic reduction of 14.7 [Formula: see text] 4.27%. More importantly, compared to unassisted walking (when exosuit is not worn), such a passive device can reduce walking metabolic cost by 4.68 [Formula: see text] 4.24%.


Asunto(s)
Diseño de Equipo/métodos , Extremidad Inferior/fisiología , Robótica/instrumentación , Caminata/fisiología , Adulto , Fenómenos Biomecánicos , Metabolismo Energético , Dispositivo Exoesqueleto , Retroalimentación , Femenino , Marcha , Voluntarios Sanos , Humanos , Masculino , Modelos Biológicos , Dispositivos Electrónicos Vestibles , Adulto Joven
2.
Front Neurorobot ; 12: 39, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30050426

RESUMEN

Assistive devices can be considered as one of the main applications of legged locomotion research in daily life. In order to develop an efficient and comfortable prosthesis or exoskeleton, biomechanical studies on human locomotion are very useful. In this paper, the applicability of the FMCH (force modulated compliant hip) model is investigated for control of lower limb wearable exoskeletons. This is a bioinspired method for posture control, which is based on the virtual pivot point (VPP) concept, found in human walking. By implementing the proposed method on a detailed neuromuscular model of human walking, we showed that using a biarticular actuator parallel to the hamstring muscle, activation in most of the leg muscles can be reduced. In addition, the total metabolic cost of motion is decreased up to 12%. The simple control rule of assistance is based on leg force feedback which is the only required sensory information.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA