Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 19007, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152137

RESUMEN

In this paper, we study the formation of optical bistability (OB) and optical multistability (OM) in a degenerate four-level atomic system by an external magnetic field that is excited by a probe laser field, a coupling laser field and a signal laser field. The coupling field can cause electromagnetically induced transparency (EIT) for the probe field in the atomic medium, while the signal field and/or external magnetic field can switch between single-EIT and two-EIT regimes. Based on these properties, OB and OM effects can be formed at two different frequency regions of the probe field (two channels). By adjusting the magnetic field or the intensity and the frequency of laser fields, the threshold intensity and the width of OB or OM can also be changed simply. The model can be useful for experimental observations and applications in modern photonic devices.

2.
Opt Lett ; 49(17): 4787-4790, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207964

RESUMEN

We report an experimental measurement of giant group index in the 85Rb atomic medium at room temperature via a four-level V-type scheme on the D2 line. Our experiment uses co-propagation configuration of probe and coupling lasers through an atomic sample. In this configuration, three sharp EIT windows with significant transparency depths are observed on the probe absorption spectrum. By establishing a Mach-Zehnder interferometer, we measure the dispersive curve and hence obtain the group index curve with three enhanced positive peaks at the locations of the EIT windows, interspersed with negative peaks. The amplitude of the group index curve is increased as the temperature decreases and is decreased as the temperature increases. We estimate from our experimental results the good values of the group index to be ng = 5.8 × 104 (slow light regime) and ng = -4.0 × 104 (fast light regime). We also show that the experimental measurements are in good agreement with the theoretical results.

3.
EMBO Mol Med ; 16(6): 1228-1253, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38789599

RESUMEN

In the injured brain, new neurons produced from endogenous neural stem cells form chains and migrate to injured areas and contribute to the regeneration of lost neurons. However, this endogenous regenerative capacity of the brain has not yet been leveraged for the treatment of brain injury. Here, we show that in healthy brain chains of migrating new neurons maintain unexpectedly large non-adherent areas between neighboring cells, allowing for efficient migration. In instances of brain injury, neuraminidase reduces polysialic acid levels, which negatively regulates adhesion, leading to increased cell-cell adhesion and reduced migration efficiency. The administration of zanamivir, a neuraminidase inhibitor used for influenza treatment, promotes neuronal migration toward damaged regions, fosters neuronal regeneration, and facilitates functional recovery. Together, these findings shed light on a new mechanism governing efficient neuronal migration in the adult brain under physiological conditions, pinpoint the disruption of this mechanism during brain injury, and propose a promising therapeutic avenue for brain injury through drug repositioning.


Asunto(s)
Encéfalo , Movimiento Celular , Neuraminidasa , Neuronas , Neuraminidasa/metabolismo , Neuraminidasa/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Animales , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratones , Zanamivir/farmacología , Inhibidores Enzimáticos/farmacología , Ácidos Siálicos/metabolismo , Lesiones Encefálicas/tratamiento farmacológico , Lesiones Encefálicas/metabolismo , Recuperación de la Función/efectos de los fármacos , Ratones Endogámicos C57BL , Adhesión Celular/efectos de los fármacos , Humanos , Masculino
4.
Sci Rep ; 14(1): 1554, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38238353

RESUMEN

In this work, we present an analytical method to achieve giant Kerr nonlinearity without absorption in a five-level atomic medium. By using iterative perturbation technique on density matrix equations, we have derived the analytical expressions of nonlinear susceptibility and Kerr nonlinear coefficient in the presence of spontaneously generated coherence (SGC) and relative phase between applied laser fields. It shows that, this five-level atomic medium exhibits multiple electromagnetically induced transparency (EIT) at three different frequencies, at the same time, the Kerr nonlinear coefficient is enhanced around three transparent spectral regions; in each such EIT region appears a pair of positive-negative peaks of Kerr nonlinear coefficient. In particular, these nonlinear peaks are moved to the center of the EIT windows via SGC. This means that the Kerr nonlinear coefficient is enhanced with completely suppressed absorption at different transparency frequencies. Furthermore, the magnitude and the sign of the Kerr nonlinear coefficient are easily controlled according to the SGC strength, the coupling laser intensity, and the relative phase between applied laser fields. Such a giant nonlinear medium can be useful for photonic devices working in the resonant frequency region without absorption. As a typical application, this giant Kerr nonlinear material has been applied to an interferometer for the formation of optical bistability, and showed the appearance of OB at the resonant frequency with significantly reduced threshold intensity and OB width.

5.
J Neurosci ; 39(50): 9967-9988, 2019 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-31685650

RESUMEN

New neurons, referred to as neuroblasts, are continuously generated in the ventricular-subventricular zone of the brain throughout an animal's life. These neuroblasts are characterized by their unique potential for proliferation, formation of chain-like cell aggregates, and long-distance and high-speed migration through the rostral migratory stream (RMS) toward the olfactory bulb (OB), where they decelerate and differentiate into mature interneurons. The dynamic changes of ultrastructural features in postnatal-born neuroblasts during migration are not yet fully understood. Here we report the presence of a primary cilium, and its ultrastructural morphology and spatiotemporal dynamics, in migrating neuroblasts in the postnatal RMS and OB. The primary cilium was observed in migrating neuroblasts in the postnatal RMS and OB in male and female mice and zebrafish, and a male rhesus monkey. Inhibition of intraflagellar transport molecules in migrating neuroblasts impaired their ciliogenesis and rostral migration toward the OB. Serial section transmission electron microscopy revealed that each migrating neuroblast possesses either a pair of centrioles or a basal body with an immature or mature primary cilium. Using immunohistochemistry, live imaging, and serial block-face scanning electron microscopy, we demonstrate that the localization and orientation of the primary cilium are altered depending on the mitotic state, saltatory migration, and deceleration of neuroblasts. Together, our results highlight a close mutual relationship between spatiotemporal regulation of the primary cilium and efficient chain migration of neuroblasts in the postnatal brain.SIGNIFICANCE STATEMENT Immature neurons (neuroblasts) generated in the postnatal brain have a mitotic potential and migrate in chain-like cell aggregates toward the olfactory bulb. Here we report that migrating neuroblasts possess a tiny cellular protrusion called a primary cilium. Immunohistochemical studies with zebrafish, mouse, and monkey brains suggest that the presence of the primary cilium in migrating neuroblasts is evolutionarily conserved. Ciliogenesis in migrating neuroblasts in the rostral migratory stream is suppressed during mitosis and promoted after cell cycle exit. Moreover, live imaging and 3D electron microscopy revealed that ciliary localization and orientation change during saltatory movement of neuroblasts. Our results reveal highly organized dynamics in maturation and positioning of the primary cilium during neuroblast migration that underlie saltatory movement of postnatal-born neuroblasts.


Asunto(s)
Movimiento Celular/fisiología , Cilios/ultraestructura , Ventrículos Laterales/ultraestructura , Células-Madre Neurales/ultraestructura , Neuronas/ultraestructura , Bulbo Olfatorio/ultraestructura , Animales , Femenino , Macaca mulatta , Masculino , Ratones , Pez Cebra
6.
Appl Opt ; 58(16): 4192-4199, 2019 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-31251219

RESUMEN

We propose a simple system for both optical switching and bistability based on degenerated two-level atoms placed in a ring cavity and an external magnetic field. The magnetic field splits a lower level into two separated levels, both of which are connected to an upper level by coupling and probe laser fields. Under an electromagnetically induced transparency regime, the system exhibits optical bistability and switching properties in which its thresholds and switching rate can be controlled by modulating intensity of the magnetic field or the coupling light field. Furthermore, the system can be controlled to work in varying frequency regimes by using a sole laser for both coupling and probe fields. Such a proposed scheme may be useful for realization of optical switches and storage devices.

7.
EMBO J ; 37(4)2018 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-29348324

RESUMEN

Newborn neurons maintain a very simple, bipolar shape, while they migrate from their birthplace toward their destinations in the brain, where they differentiate into mature neurons with complex dendritic morphologies. Here, we report a mechanism by which the termination of neuronal migration is maintained in the postnatal olfactory bulb (OB). During neuronal deceleration in the OB, newborn neurons transiently extend a protrusion from the proximal part of their leading process in the resting phase, which we refer to as a filopodium-like lateral protrusion (FLP). The FLP formation is induced by PlexinD1 downregulation and local Rac1 activation, which coincide with microtubule reorganization and the pausing of somal translocation. The somal translocation of resting neurons is suppressed by microtubule polymerization within the FLP The timing of neuronal migration termination, controlled by Sema3E-PlexinD1-Rac1 signaling, influences the final positioning, dendritic patterns, and functions of the neurons in the OB These results suggest that PlexinD1 signaling controls FLP formation and the termination of neuronal migration through a precise control of microtubule dynamics.


Asunto(s)
Movimiento Celular , Extensiones de la Superficie Celular/fisiología , Glicoproteínas de Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neurogénesis , Neuronas/citología , Neuronas/fisiología , Animales , Animales Recién Nacidos , Células Cultivadas , Proteínas del Citoesqueleto , Glicoproteínas/genética , Glicoproteínas/metabolismo , Péptidos y Proteínas de Señalización Intracelular , Glicoproteínas de Membrana/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas del Tejido Nervioso/genética , Neuropéptidos/genética , Neuropéptidos/metabolismo , Semaforinas , Transducción de Señal , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo
8.
J Chem Phys ; 130(12): 124307, 2009 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-19334830

RESUMEN

Two previously unknown (1)Pi states and one (1)Sigma(+) state of NaLi are experimentally investigated in the energy region of 34,000-36,000 cm(-1) above the bottom of the molecular ground state potential well by using polarization labeling spectroscopy technique. Potential energy curves are deduced for all three states from the observed rovibrational levels. The identity of the observed states is discussed in relation with the recently published theoretical calculations on electronic structure of NaLi by Petsalakis et al. [J. Chem. Phys. 129, 054306 (2008)] and Mabrouk and Berriche [J. Phys. B41, 155101 (2008)].

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA