Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 25(6): 5107-5113, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722992

RESUMEN

Investigating the molecular mechanism underlying the aggregation process of amyloid fibers is of great importance both for its implications in several degenerative diseases and for the design of new materials based on self-assembly. In particular, micro/nanotubes of L,L-diphenylalanine have been investigated as a model of amyloid plaques in Alzheimer's disease and also for their broad range of physical properties, e.g., good thermo- and mechanical stability, semiconductivity, piezoelectricity and optical properties. It has been reported that the assembly/disassembly dynamics of L,L-diphenylalanine crystals is influenced by the solvent composition being triggered by evaporation of solvents. In fact the solvatomorphism of this peptide-based nanomaterial is complex and rich attracting great attention. Here we investigated the growing kinetics of the micro/nanotubes of L,L-diphenylalanine in samples prepared with toluene, ethanol, and acetic acid solvents by time-resolved Raman spectroscopy. Our results indicated that the self-assembly in this case competes with the water evaporation process contrary to what is reported by samples prepared with widely used solvent 1,1,1,3,3,3-hexafluoro-2-propanol. We note that exclusively tubular structures (being hollow for the toluene solvent case) were observed. Interestingly our results support the fact that for acetic acid, ethanol, and toluene the micro/nanotube formation process is autocatalytic instead of being nucleation-dominating as reported for samples prepared using solvent 1,1,1,3,3,3-hexafluoro-2-propanol.


Asunto(s)
Nanotubos , Solventes/química , Cinética , Nanotubos/química , Dipéptidos/química , Etanol , Tolueno
2.
Sci Rep ; 12(1): 4269, 2022 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-35277543

RESUMEN

It has been reported that patients diagnosed with COVID-19 become critically ill primarily around the time of activation of the adaptive immune response. However the role of antibodies in the worsening of disease is not obvious. Higher titers of anti-spike immunoglobulin IgG1 associated with low fucosylation of the antibody Fc tail have been associated to excessive inflammatory response. In contrast it has been also reported that NP-, S-, RBD- specific IgA, IgG, and IgM are not associated with SARS-CoV-2 viral load, indicating that there is no obvious correlation between antibody response and viral antigen detection. In the present work the micro-Fourier-transform infrared reflectance spectroscopy (micro-FTIR) was employed to investigate blood serum samples of healthy and COVID-19-ill (mild or oligosymptomatic) individuals (82 healthcare workers volunteers in "Instituto de Infectologia Emilio Ribas", São Paulo, Brazil). The molecular-level-sensitive, multiplexing quantitative and qualitative FTIR data probed on 1 µL of dried biofluid was compared to signal-to-cutoff index of chemiluminescent immunoassays CLIA and ELISA (IgG antibodies against SARS-CoV-2). Our main result indicated that 1702-1785 [Formula: see text] spectral window (carbonyl C=O vibration) is a spectral marker of the degree of IgG glycosylation, allowing to probe distinctive sub-populations of COVID-19 patients, depending on their degree of severity. The specificity was 87.5 % while the detection rate of true positive was 100%. The computed area under the receiver operating curve was equivalent to CLIA, ELISA and other ATR-FTIR methods ([Formula: see text]). In summary, overall discrimination of healthy and COVID-19 individuals and severity prediction as well could be potentially implemented using micro-FTIR reflectance spectroscopy on blood serum samples. Considering the minimal and reagent-free sample preparation procedures combined to fast (few minutes) outcome of FTIR we can state that this technology is suitable for fast screening of immune response of individuals with COVID-19. It would be an important tool in prospective studies, helping investigate the physiology of the asymptomatic, oligosymptomatic, or severe individuals and measure the extension of infection dissemination in patients.


Asunto(s)
COVID-19/metabolismo , Inmunoglobulina G/metabolismo , SARS-CoV-2/inmunología , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Adulto , Anticuerpos Antivirales/inmunología , COVID-19/diagnóstico por imagen , COVID-19/inmunología , Prueba de COVID-19/métodos , Ensayo de Inmunoadsorción Enzimática , Femenino , Glicosilación , Humanos , Mediciones Luminiscentes , Masculino , Persona de Mediana Edad , Gravedad del Paciente , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Espectroscopía Infrarroja por Transformada de Fourier/instrumentación , Carga Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA