Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Phys Condens Matter ; 32(6): 065302, 2020 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-31487701

RESUMEN

The probability of the inter-Coulombic electron capture (ICEC) is studied for nanowire-embedded quantum-dot pairs where electron capture in one dot leads to electron emission from the other. Previous studies pointed to an interdependence of several ICEC pathways which can enhance the ICEC reaction probability. To identify favorable criteria for such synergies in a qualitative and quantitative manner, we conducted a considerable amount of simulations scanning multiple geometrical parameters. The focus of the paper is not only to find the geometries which are most favorable to ICEC but most importantly to explain the basic principles of the ICEC probability. We have thus derived a number of energy relations among solely single-electron level energies that explain the mechanisms of the multiple reaction pathways. Among them are direct ICEC, both slowing or accelerating the outgoing electron, as well as resonance-enhanced ICEC which captures into a two-electron resonance state that decays thereafter. These pathways may apply simultaneously for just one single geometric configuration and contribute constructively leading to an enhancement of the reaction probability. Likewise some conditions are found that clearly turn down the ICEC probability to zero. The results based on single-electron relations are so general that they can as well be used to predict the ICEC probability from the electronic structure in arbitrary physical systems such as atoms or molecules.

2.
J Phys Condens Matter ; 28(7): 075301, 2016 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-26809134

RESUMEN

We recently predicted that the interatomic Coulombic electron capture (ICEC) process, a long-range electron correlation driven capture process, is achievable in gated double quantum dots (DQDs). In ICEC an incoming electron is captured by one quantum dot (QD) and the excess energy is used to remove an electron from the neighboring QD. In this work we present systematic full three-dimensional electron dynamics calculations in quasi-one dimensional model potentials that allow for a detailed understanding of the connection between the DQD geometry and the reaction probability for the ICEC process. We derive an effective one-dimensional approach and show that its results compare very well with those obtained using the full three-dimensional calculations. This approach substantially reduces the computation times. The investigation of the electronic structure for various DQD geometries for which the ICEC process can take place clarify the origin of its remarkably high probability in the presence of two-electron resonances.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA