Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(10)2021 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-34065512

RESUMEN

Multisubunit cullin-RING ubiquitin ligase 4 (CRL4)-DCAF12 recognizes the C-terminal degron containing acidic amino acid residues. However, its physiological roles and substrates are largely unknown. Purification of CRL4-DCAF12 complexes revealed a wide range of potential substrates, including MOV10, an "ancient" RNA-induced silencing complex (RISC) complex RNA helicase. We show that DCAF12 controls the MOV10 protein level via its C-terminal motif in a proteasome- and CRL-dependent manner. Next, we generated Dcaf12 knockout mice and demonstrated that the DCAF12-mediated degradation of MOV10 is conserved in mice and humans. Detailed analysis of Dcaf12-deficient mice revealed that their testes produce fewer mature sperms, phenotype accompanied by elevated MOV10 and imbalance in meiotic markers SCP3 and γ-H2AX. Additionally, the percentages of splenic CD4+ T and natural killer T (NKT) cell populations were significantly altered. In vitro, activated Dcaf12-deficient T cells displayed inappropriately stabilized MOV10 and increased levels of activated caspases. In summary, we identified MOV10 as a novel substrate of CRL4-DCAF12 and demonstrated the biological relevance of the DCAF12-MOV10 pathway in spermatogenesis and T cell activation.


Asunto(s)
Antígenos de Neoplasias/metabolismo , Linfocitos T CD4-Positivos/metabolismo , Células T Asesinas Naturales/metabolismo , ARN Helicasas/metabolismo , Espermatogénesis/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Activación de Linfocitos/fisiología , Ratones Endogámicos C57BL , Ratones Noqueados , Complejo de la Endopetidasa Proteasomal/metabolismo , Ubiquitina/metabolismo
2.
Genes (Basel) ; 10(10)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623112

RESUMEN

The Wnt, TGF-ß, and Notch signaling pathways are essential for the regulation of cellular polarity, differentiation, proliferation, and migration. Differential activation and mutual crosstalk of these pathways during animal development are crucial instructive forces in the initiation of the body axis and the development of organs and tissues. Due to the ability to initiate cell proliferation, these pathways are vulnerable to somatic mutations selectively producing cells, which ultimately slip through cellular and organismal checkpoints and develop into cancer. The architecture of the Wnt, TGF-ß, and Notch signaling pathways is simple. The transmembrane receptor, activated by the extracellular stimulus, induces nuclear translocation of the transcription factor, which subsequently changes the expression of target genes. Nevertheless, these pathways are regulated by a myriad of factors involved in various feedback mechanisms or crosstalk. The most prominent group of regulators is the ubiquitin-proteasome system (UPS). To open the door to UPS-based therapeutic manipulations, a thorough understanding of these regulations at a molecular level and rigorous confirmation in vivo are required. In this quest, mouse models are exceptional and, thanks to the progress in genetic engineering, also an accessible tool. Here, we reviewed the current understanding of how the UPS regulates the Wnt, TGF-ß, and Notch pathways and we summarized the knowledge gained from related mouse models.


Asunto(s)
Ratones/embriología , Ratones/genética , Ubiquitina-Proteína Ligasas/fisiología , Animales , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Homeostasis/genética , Ligasas/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , beta Catenina/metabolismo
3.
Int J Mol Sci ; 20(7)2019 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-30934845

RESUMEN

Commensal microbiota contribute to gut homeostasis by inducing transcription of mucosal genes. Analysis of the impact of various microbiota on intestinal tissue provides an important insight into the function of this organ. We used cDNA microarrays to determine the gene expression signature of mucosa isolated from the small intestine and colon of germ-free (GF) mice and animals monoassociated with two E. coli strains. The results were compared to the expression data obtained in conventionally reared (CR) mice. In addition, we analyzed gene expression in colon organoids derived from CR, GF, and monoassociated animals. The analysis revealed that the complete absence of intestinal microbiota mainly affected the mucosal immune system, which was not restored upon monoassociation. The most important expression changes observed in the colon mucosa indicated alterations in adipose tissue and lipid metabolism. In the comparison of differentially expressed genes in the mucosa or organoids obtained from GF and CR mice, only six genes were common for both types of samples. The results show that the increased expression of the angiopoietin-like 4 (Angptl4) gene encoding a secreted regulator of lipid metabolism indicates the GF status.


Asunto(s)
Perfilación de la Expresión Génica , Vida Libre de Gérmenes/genética , Mucosa Intestinal/metabolismo , Organoides/metabolismo , Animales , Biomarcadores/metabolismo , Colon/metabolismo , Escherichia coli/fisiología , Regulación de la Expresión Génica , Sistema Inmunológico/metabolismo , Inmunidad Mucosa , Ratones Endogámicos BALB C , Microbiota
4.
Transl Oncol ; 9(2): 99-107, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27084425

RESUMEN

Neoplastic growth is frequently associated with genomic DNA methylation that causes transcriptional silencing of tumor suppressor genes. We used a collection of colorectal polyps and carcinomas in combination with bioinformatics analysis of large datasets to study the expression and methylation of Hypermethylated in cancer 1 (HIC1), a tumor suppressor gene inactivated in many neoplasms. In premalignant stages, HIC1 expression was decreased, and the decrease was linked to methylation of a specific region in the HIC1 locus. However, in carcinomas, the HIC1 expression was variable and, in some specimens, comparable to healthy tissue. Importantly, high HIC1 production distinguished a specific type of chemotherapy-responsive tumors.

5.
Mol Cancer Res ; 13(7): 1139-48, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25934696

RESUMEN

UNLABELLED: Hypermethylated in cancer 1 (HIC1) represents a prototypic tumor suppressor gene frequently inactivated by DNA methylation in many types of solid tumors. The gene encodes a sequence-specific transcriptional repressor controlling expression of several genes involved in cell cycle or stress control. In this study, a Hic1 allele was conditionally deleted, using a Cre/loxP system, to identify genes influenced by the loss of Hic1. One of the transcripts upregulated upon Hic1 ablation is the toll-like receptor 2 (TLR2). Tlr2 expression levels increased in Hic1-deficient mouse embryonic fibroblasts (MEF) and cultured intestinal organoids or in human cells upon HIC1 knockdown. In addition, HIC1 associated with the TLR2 gene regulatory elements, as detected by chromatin immunoprecipitation, indicating that Tlr2 indeed represents a direct Hic1 target. The Tlr2 receptor senses "danger" signals of microbial or endogenous origin to trigger multiple signaling pathways, including NF-κB signaling. Interestingly, Hic1 deficiency promoted NF-κB pathway activity not only in cells stimulated with Tlr2 ligand, but also in cells treated with NF-κB activators that stimulate different surface receptors. In the intestine, Hic1 is mainly expressed in differentiated epithelial cells and its ablation leads to increased Tlr2 production. Finally, in a chemical-induced mouse model of carcinogenesis, Hic1 absence resulted in larger Tlr2-positive colonic tumors that showed increased proportion of proliferating cells. IMPLICATIONS: The tumor-suppressive function of Hic1 in colon is related to its inhibitory action on proproliferative signaling mediated by the Tlr2 receptor present on tumor cells.


Asunto(s)
Carcinogénesis/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Receptor Toll-Like 2/metabolismo , Proteínas Supresoras de Tumor/metabolismo , Animales , Azoximetano , Línea Celular Tumoral , Proliferación Celular , Neoplasias del Colon , Sulfato de Dextran , Modelos Animales de Enfermedad , Células Epiteliales , Técnicas de Silenciamiento del Gen , Humanos , Intestinos/citología , Ratones , Ratones Transgénicos , Regulación hacia Arriba
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA