Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Cardiovasc Dev Dis ; 11(6)2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38921682

RESUMEN

AIM: To assess the acute effect of empagliflozin versus dapagliflozin administration on flow-mediated vasodilation in patients with type 2 diabetes mellitus. DESIGN: A double-blind clinical trial, at the Experimental and Clinical Therapeutics Institute, University Health Sciences Center, at the Universidad de Guadalajara, in inpatients with T2D according to the 2023 ADA criteria. METHODS: Thirty patients (15 males and 15 females), aged between 35 and 65 years, were included in this study, according to the 2023 ADA criteria. The eligible patients were randomly assigned to three groups: empagliflozin 25 mg once daily, dapagliflozin 10 mg once daily, or placebo once daily. Anthropometric parameters were taken using validated techniques. FMD was measured using a high-resolution semiautomatic ultrasound UNEX-EF 38G (UNEX Co., Ltd., Nagoya, Japan). Arterial tension was determined with the OMRON electronic digital sphygmomanometer (HEM 907 XL, Kyoto, Japan). RESULTS: The group of patients who received empagliflozin had a significantly lower baseline flow-mediated dilation (FMD) compared to the group receiving dapagliflozin (p = 0.017); at the end of this study, the empagliflozin group achieved a comparable FMD to the dapagliflozin group (p = 0.88). CONCLUSION: After the treatment period, the empagliflozin and dapagliflozin groups achieved similar FMD, suggesting a class effect.

2.
Microorganisms ; 12(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38930451

RESUMEN

The human microbiome, a complex ecosystem of bacteria, viruses, and protozoans living in symbiosis with the host, plays a crucial role in human health, influencing everything from metabolism to immune function. Dysbiosis, or an imbalance in this ecosystem, has been linked to various health issues, including diabetes and gestational diabetes (GD). In diabetes, dysbiosis affects the function of adipose tissue, leading to the release of adipokines and cytokines, which increase inflammation and insulin resistance. During pregnancy, changes to the microbiome can exacerbate glucose intolerance, a common feature of GD. Over the past years, burgeoning insights into the gut microbiota have unveiled its pivotal role in human health. This article comprehensively reviews literature from the last seven years, highlighting the association between gut microbiota dysbiosis and GD, as well as the metabolism of antidiabetic drugs and the potential influences of diet and probiotics. The underlying pathophysiological mechanisms discussed include the impact of dysbiosis on systemic inflammation and the interplay with genetic and environmental factors. By focusing on recent studies, the importance of considering microbial health in the prevention and treatment of GD is emphasized, providing insights into future research directions and clinical applications to improve maternal-infant health outcomes.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA