Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Antonie Van Leeuwenhoek ; 115(8): 1009-1029, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35678932

RESUMEN

The genomes of two Penicillium strains were sequenced and studied in this study: strain 2HH was isolated from the digestive tract of Anobium punctatum beetle larva in 1979 and the cellulase hypersecretory strain S1M29, derived from strain 2HH by a long-term mutagenesis process. With these data, the strains were reclassified and insight is obtained on molecular features related to cellulase hyperproduction and the albino phenotype of the mutant. Both strains were previously identified as Penicillium echinulatum and this investigation indicated that these should be reclassified. Phylogenetic and phenotype data showed that these strains represent a new Penicillium species in series Oxalica, for which the name Penicillium ucsense is proposed here. Six additional strains (SFC101850, SFCP10873, SFCP10886, SFCP10931, SFCP10932 and SFCP10933) collected from the marine environment in the Republic of Korea were also classified as this species, indicating a worldwide distribution of this new taxon. Compared to the closely related strain Penicillium oxalicum 114-2, the composition of cell wall-associated proteins of P. ucsense 2HH shows five fewer chitinases, considerable differences in the number of proteins related to ß-D-glucan metabolism. The genomic comparison of 2HH and S1M29 highlighted single amino-acid substitutions in two major proteins (BGL2 and FlbA) that can be associated with the hyperproduction of cellulases. The study of melanin pathways shows that the S1M29 albino phenotype resulted from a single amino-acid substitution in the enzyme ALB1, a precursor of the 1,8-dihydroxynaphthalene (DHN)-melanin biosynthesis. Our study provides important knowledge towards understanding species distribution, molecular mechanisms, melanin production and cell wall biosynthesis of this new Penicillium species.


Asunto(s)
Celulasa , Penicillium , Celulasa/genética , Genómica , Melaninas/metabolismo , Penicillium/genética , Filogenia
2.
Gene ; 822: 146345, 2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35189252

RESUMEN

Penicillium echinulatum 2HH is an ascomycete well known for its production of cellulolytic enzymes. Understanding lignocellulolytic and sugar uptake systems is essential to obtain efficient fungi strains for the production of bioethanol. In this study we performed a genome-wide functional annotation of carbohydrate-active enzymes and sugar transporters involved in the lignocellulolytic system of P. echinulatum 2HH and S1M29 strains (wildtype and mutant, respectively) and eleven related fungi. Additionally, signal peptide and orthology prediction were carried out. We encountered a diverse assortment of cellulolytic enzymes in P. echinulatum, especially in terms of ß-glucosidases and endoglucanases. Other enzymes required for the breakdown of cellulosic biomass were also found, including cellobiohydrolases, lytic cellulose monooxygenases and cellobiose dehydrogenases. The S1M29 mutant, which is known to produce an increased cellulase activity, and the 2HH wild type strain of P. echinulatum did not show significant differences between their enzymatic repertoire. Nevertheless, we unveiled an amino acid substitution for a predicted intracellular ß-glucosidase of the mutant, which might contribute to hyperexpression of cellulases through a cellodextrin induction pathway. Most of the P. echinulatum enzymes presented orthologs in P. oxalicum 114-2, supporting the presence of highly similar cellulolytic mechanisms and a close phylogenetic relationship between these fungi. A phylogenetic analysis of intracellular ß-glucosidases and sugar transporters allowed us to identify several proteins potentially involved in the accumulation of intracellular cellodextrins. These may prove valuable targets in the genetic engineering of P. echinulatum focused on industrial cellulases production. Our study marks an important step in characterizing and understanding the molecular mechanisms employed by P. echinulatum in the enzymatic hydrolysis of lignocellulosic biomass.


Asunto(s)
Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Lignina/metabolismo , Penicillium/metabolismo , Sustitución de Aminoácidos , Transporte Biológico , Metabolismo de los Hidratos de Carbono , Celulosa/análogos & derivados , Dextrinas , Regulación Fúngica de la Expresión Génica , Anotación de Secuencia Molecular , Penicillium/genética , Filogenia , Azúcares/metabolismo
3.
Front Microbiol ; 11: 588263, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33193246

RESUMEN

Penicillium echinulatum 2HH and Penicillium oxalicum 114-2 are well-known cellulase fungal producers. However, few studies addressing global mechanisms for gene regulation of these two important organisms are available so far. A recent finding that the 2HH wild-type is closely related to P. oxalicum leads to a combined study of these two species. Firstly, we provide a global gene regulatory network for P. echinulatum 2HH and P. oxalicum 114-2, based on TF-TG orthology relationships, considering three related species with well-known regulatory interactions combined with TFBSs prediction. The network was then analyzed in terms of topology, identifying TFs as hubs, and modules. Based on this approach, we explore numerous identified modules, such as the expression of cellulolytic and xylanolytic systems, where XlnR plays a key role in positive regulation of the xylanolytic system. It also regulates positively the cellulolytic system by acting indirectly through the cellodextrin induction system. This remarkable finding suggests that the XlnR-dependent cellulolytic and xylanolytic regulatory systems are probably conserved in both P. echinulatum and P. oxalicum. Finally, we explore the functional congruency on the genes clustered in terms of communities, where the genes related to cellular nitrogen, compound metabolic process and macromolecule metabolic process were the most abundant. Therefore, our approach allows us to confer a degree of accuracy regarding the existence of each inferred interaction.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA