Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Materials (Basel) ; 17(10)2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38793486

RESUMEN

In this article, the results of research on a NiTi alloy with a high nickel content (51.7 at.%), produced using the additive technology SLM method and subjected to isothermal ageing after solution annealing, are presented. The study involved the determination of the sequence of phase transformations occurring using differential scanning calorimetry (DSC) and the determination of the temperature range of these transformations. In parallel, the phase composition was determined using the XRD method; the hardness and the Young's modulus were also determined. The analysis of the DSC results obtained indicates the following characteristic features of the NiTi alloy, which change with ageing time: (1) During cooling (from +150 °C to -50 °C), the type of transformation changes from a one-step transformation after solution annealing to a two-step transformation after the ageing process over 1, 20, and 100 h at 500 °C; (2) during heating (from -50 °C to +150 °C) for all the samples, regardless of the ageing time, only a one-step transformation from martensite M(B19') to austenite A(B2) is observed; (3) the temperature at which the transformation starts increases with the ageing time; (4) the width of the total temperature range of the transformation M(B19') → A(B2) during heating changes from large (ΔT = 49.7 °C), after solution annealing, to narrow (ΔT = 19.3 °C and ΔT = 17.9 °C after 20 h and 100 h of ageing); and, most importantly, (5) a comparison with the literature data shows that, irrespective of the composition of the NiTi alloy and the manufacturing technology of the alloy samples (regardless of whether this was traditional or additive technology), a sufficiently long ageing process period leads to the occurrence of the martensite → austenite transformation in the same temperature range.

2.
Materials (Basel) ; 16(8)2023 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-37110031

RESUMEN

Triply periodic minimal surfaces (TPMS) are structures inspired by nature with unique properties. Numerous studies confirm the possibility of using TPMS structures for heat dissipation, mass transport, and biomedical and energy absorption applications. In this study, the compressive behavior, overall deformation mode, mechanical properties, and energy absorption ability of Diamond TPMS cylindrical structures produced by selective laser melting of 316L stainless steel powder were investigated. Based on the experimental studies, it was found that tested structures exhibited different cell strut deformation mechanisms (bending-dominated and stretch-dominated) and overall deformation modes (uniform and "layer-by-layer") depending on structural parameters. Consequently, the structural parameters had an impact on the mechanical properties and the energy absorption ability. The evaluation of basic absorption parameters shows the advantage of bending-dominated Diamond TPMS cylindrical structures in comparison with stretch-dominated Diamond TPMS cylindrical structures. However, their elastic modulus and yield strength were lower. Comparative analysis with the author's previous work showed a slight advantage for bending-dominated Diamond TPMS cylindrical structures in comparison with Gyroid TPMS cylindrical structures. The results of this research can be used to design and manufacture more efficient, lightweight components for energy absorption applications in the fields of healthcare, transportation, and aerospace.

3.
Materials (Basel) ; 16(3)2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36770177

RESUMEN

Composites are materials with a heterogeneous structure, composed of two or more components with different properties. The properties of composites are never the sum or average of the properties of their components. There is a lot of research and many models on the different property assessments of composite materials. Composites are used as construction materials in key areas of technology, including in civil and mechanical engineering, aviation and space technology, and others. This work presents a modern composite material created with 3D-printing technology using the SLM method, and the possibility of its processing with one of the advanced manufacturing technologies, i.e., the Abrasive Water Jet (AWJ). Tests planned using DoE methods were carried out by changing control parameters such as the pressure, abrasive flow, and traverse speed. As a dependent parameter, the surface roughness parameter Sq (squared mean height) was selected and measured in different places of the cut composite. Based on the S/N ratio, the most favorable control parameters of the cutting process were also determined to achieve the lowest roughness of the cut surface. A clear effect of the controlled cutting process on the surface roughness was observed, as well as roughness variation for the metal and polymer component. In addition, the contact surface of the polymer with the metal in the cut zone was analyzed. Analysis of the contact surfaces on the microscope showed that the gap between the polymer-metal contact surfaces does not exceed 2.5 µm.

4.
Materials (Basel) ; 15(12)2022 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-35744414

RESUMEN

The development of additive manufacturing techniques has made it possible to produce porous structures with complex geometry with unique properties as potential candidates for energy absorption, heat dissipation, biomedical, and vibration control application. Recently, there has been increased interest in additively manufacturing porous structures based on triply periodic minimal surfaces (TPMS) topology. In this paper, the mechanical properties and energy absorption abilities of cylindrical mapped TPMS structures with shell gyroid unit cells fabricated by selective laser melting (SLM) with 316L stainless steel under compression loading were investigated. Based on the experimental study, it was found that tested structures exhibited two different deformation modes. There is also a relationship between the number and shapes of unit cells in the structure and the elastic modulus, yield strength, plateau stress, and energy absorption. These results can be used to design and manufacture more efficient lightweight parts lattices for energy absorbing applications, e.g., in the field of biomedical and bumpers applications. The deformation mode for each tested sample was also presented on the records obtained from the ARAMIS system.

5.
Materials (Basel) ; 14(24)2021 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-34947497

RESUMEN

The paper describes an automated method for grinding small ceramic elements using a hyperboloid wheel. The problem of automating the process of machining elements made of nonmagnetic materials with a small area and low height has been solved. Automation of the grinding process was possible thanks to automatic clamping of workpieces in the machining zone and sequential processing by a specified number of grinding wheels. The workpieces were passed through successive machining zones. The division of the allowance of individual grinding wheels was made taking into account the characteristics of the workpieces and the requirements for the results of the machining. Obtaining a long grinding zone and the effect of automatic clamping of the workpieces was possible due to the inclination of the grinding wheel axis in relation to the plane of movement of the workpieces. Innovative aggregate grinding wheels were used for grinding. The aggregates containing diamond abrasive grains, connected with a metal bond, were embedded in the porous structure of the resin bond. The aggregates ensured high efficiency of grinding, and their developed surface contributed to good holding in the resin binder. The durability of grinding wheels was 64 h, which enables the machining of 76,000 ceramic elements.

6.
Materials (Basel) ; 14(15)2021 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-34361360

RESUMEN

The dynamic impact of a water jet with a periodically changing structure can be used in various industries. The paper presents a design solution for a self-excited pulse head. This head can be used in mining for drilling holes and breaking rocks. The design of the head was developed based on computer simulations, which made it possible to learn the mechanism of impulse shaping inside the head. Tests of the water jet produced in the self-excited pulsation head showed the occurrence of periodic changes in its internal structure and pulsation frequency. A significant increase in the dynamic stream pressures was demonstrated for the head working in the water environment compared to the head working in the air environment For example, for nominal medium and highest pressures, this increase is up to 82%, while for the lowest pressures (10 MPa), the pressure force values increase by 46%. It was found that an increase in the nominal water pressure causes a decrease in the frequency of hydrodynamic pulses in the head operating in both the water and air environment.

7.
Materials (Basel) ; 14(8)2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33921559

RESUMEN

A simulation model and the results of experimental tests of a vibration generator in applications for the hot-dip galvanizing process are presented. The parameters of the work of the asynchronous motor forcing the system vibrations were determined, as well as the degree of unbalance enabling the vibrations of galvanized elements weighing up to 500 kg to be forced. Simulation and experimental tests of the designed and then constructed vibration generator were carried out at different intensities of the unbalanced rotating mass of the motor. Based on the obtained test results, the generator operating conditions were determined at which the highest values of the amplitude of vibrations transmitted through the suspension system to the galvanized elements were obtained.

8.
Materials (Basel) ; 13(24)2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33371402

RESUMEN

Modeling of material displacements in the microcutting zone is complex due to the number and interdependence of factors affecting the results of the process. An important problem in the modeling process is the selection of the constitutive model and its parameters, which will correctly describe the properties of the material under the conditions of triaxial compression, which is characteristic for the areas of the contact zone of the blade and the processed material in abrasive machining processes. The aim of the work was to develop computer models (with the use of the finite element method) of the microcutting process with a single abrasive grain, which were verified with the results of experimental tests. The paper presents the methodology of modeling the processes of microcutting with abrasive grains, whose geometrical models were created based on optical scanning methods. Observations of the microcutting process were carried out with the use of a high-speed camera and an optical profilometer. This enabled a detailed observation of the chip formation process, as well as the analysis of the surface topography of microcutting traces. The results presented in the paper indicate the convergence of the results of the numerical and experimental simulations with regard to the geometric parameters describing the scratches formed in the microcutting process and the compliance of the chip-forming process. Thus, the correctness of the selection of the constitutive model (Johnson Cook equation) and its parameters was demonstrated, as well as the correctness of the applied methodology for creating a geometric model that allowed for a reflection of the geometrical parameters of the abrasive grains that coincided with the real objects, thanks to which it was possible to reflect in detail the phenomena occurring in the vicinity of the abrasive grain tip.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA