Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Front Endocrinol (Lausanne) ; 15: 1394812, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39055054

RESUMEN

Spermatogenesis is a multi-step biological process where mitotically active diploid (2n) spermatogonia differentiate into haploid (n) spermatozoa via regulated meiotic programming. The alarming rise in male infertility has become a global concern during the past decade thereby demanding an extensive profiling of testicular gene expression. Advancements in Next-Generation Sequencing (NGS) technologies have revolutionized our empathy towards complex biological events including spermatogenesis. However, despite multiple attempts made in the past to reveal the testicular transcriptional signature(s) either with bulk tissues or at the single-cell, level, comprehensive reviews on testicular transcriptomics and associated disorders are limited. Notably, technologies explicating the genome-wide gene expression patterns during various stages of spermatogenic progression provide the dynamic molecular landscape of testicular transcription. Our review discusses the advantages of single-cell RNA-sequencing (Sc-RNA-seq) over bulk RNA-seq concerning testicular tissues. Additionally, we highlight the cellular heterogeneity, spatial transcriptomics, dynamic gene expression and cell-to-cell interactions with distinct cell populations within the testes including germ cells (Gc), Sertoli cells (Sc), Peritubular cells (PTc), Leydig cells (Lc), etc. Furthermore, we provide a summary of key finding of single-cell transcriptomic studies that have shed light on developmental mechanisms implicated in testicular disorders and male infertility. These insights emphasize the pivotal roles of Sc-RNA-seq in advancing our knowledge regarding testicular transcriptional landscape and may serve as a potential resource to formulate future clinical interventions for male reproductive health.


Asunto(s)
Infertilidad Masculina , Análisis de la Célula Individual , Testículo , Transcriptoma , Masculino , Humanos , Testículo/metabolismo , Testículo/patología , Infertilidad Masculina/genética , Infertilidad Masculina/patología , Infertilidad Masculina/metabolismo , Animales , Espermatogénesis/genética , Perfilación de la Expresión Génica
2.
Mol Metab ; 86: 101977, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38936659

RESUMEN

OBJECTIVE: The prevalence of metabolic dysfunction-associated steatotic liver disease (MASLD) continues to rise with the increasing obesity epidemic. Rezdiffra as an activator of a thyroid hormone receptor-beta is the only Food and Drug Administration approved therapy. As such, there is a critical need to improve our understanding of gene expression regulation and signaling transduction in MASLD to develop new therapies. Matrin-3 is a DNA- and RNA-binding protein involved in the pathogenesis of human diseases. Here we examined its previously uncharacterized role in limiting hepatic steatosis and stress response via the constitutive androstane receptor (CAR). METHODS: Matrin-3 floxed and liver-specific knockout mice were fed either a chow diet or 60 kcal% high-fat diet (HFD) for up to 16 weeks. The mice were euthanized for different analysis including liver histology, lipid levels, and gene expression. Bulk RNA-seq, bulk ATAC-seq, and single-nucleus Multiome were used to examine changes of transcriptome and chromatin accessibility in the liver. Integrative bioinformatics analysis of our data and publicly available datasets and different biochemical assays were performed to identify underlying the molecular mechanisms mediating matrin-3's effects. Liver-tropic adeno-associated virus was used to restore the expression of CAR for lipid, acute phase genes, and histological analysis. RESULTS: Matrin-3 expression is induced in the steatotic livers of mice. Liver-specific matrin-3 deletion exacerbated HFD-induced steatosis, acute phase response, and inflammation in the liver of female mice. The transcriptome and chromatin accessibility were re-programmed in the liver of these mice with signatures indicating that CAR signaling is dysregulated. Mechanistically, matrin-3 interacts with CAR mRNA, and matrin-3 deficiency promotes CAR mRNA degradation. Consequently, matrin-3 deletion impaired CAR signaling by reducing CAR expression. Matrin-3 levels positively correlate with CAR expression in human livers. Ces2a and Il1r1 were identified as new target genes of CAR. Interestingly, we found that CAR discords with the expression of its target genes including Cyp2b10 and Ces2a in response to HFD, indicating CAR signaling is dysregulated by HFD despite increased CAR expression. Dysregulated CAR signaling upon matrin-3 deficiency reduced Ces2a and de-repressed Il1r1 expression. CAR restoration partially abrogated the dysregulated gene expression, exacerbated hepatic steatosis, acute phase response, and inflammation in liver-specific matrin-3 knockout mice fed a HFD. CONCLUSIONS: Our findings demonstrate that matrin-3 is a key upstream regulator maintaining CAR signaling upon metabolic stress, and the matrin-3-CAR axis limits hepatic steatosis and stress response signaling that may give insights for therapeutic intervention.


Asunto(s)
Receptor de Androstano Constitutivo , Hígado Graso , Hígado , Ratones Noqueados , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado/metabolismo , Ratones Endogámicos C57BL , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Transducción de Señal , Estrés Fisiológico
3.
Atherosclerosis ; 392: 117506, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38518516

RESUMEN

BACKGROUND AND AIMS: Long noncoding RNAs are involved in the pathogenesis of atherosclerosis. As long noncoding RNAs maternally expressed gene 3 (Meg3) prevents cellular senescence of hepatic vascular endothelium and obesity-induced insulin resistance, we decided to examine its role in cellular senescence and atherosclerosis. METHODS AND RESULTS: By analyzing our data and human and mouse data from the Gene Expression Omnibus database, we found that Meg3 expression was reduced in humans and mice with cardiovascular disease, indicating its potential role in atherosclerosis. In Ldlr-/- mice fed a Western diet for 12 weeks, Meg3 silencing by chemically modified antisense oligonucleotides attenuated the formation of atherosclerotic lesions by 34.9% and 20.1% in male and female mice, respectively, revealed by en-face Oil Red O staining, which did not correlate with changes in plasma lipid profiles. Real-time quantitative PCR analysis of cellular senescence markers p21 and p16 revealed that Meg3 deficiency aggravates hepatic cellular senescence but not cellular senescence at aortic roots. Human Meg3 transgenic mice were generated to examine the role of Meg3 gain-of-function in the development of atherosclerosis induced by PCSK9 overexpression. Meg3 overexpression promotes atherosclerotic lesion formation by 29.2% in Meg3 knock-in mice independent of its effects on lipid profiles. Meg3 overexpression inhibits hepatic cellular senescence, while it promotes aortic cellular senescence likely by impairing mitochondrial function and delaying cell cycle progression. CONCLUSIONS: Our data demonstrate that Meg3 promotes the formation of atherosclerotic lesions independent of its effects on plasma lipid profiles. In addition, Meg3 regulates cellular senescence in a tissue-specific manner during atherosclerosis. Thus, we demonstrated that Meg3 has multifaceted roles in cellular senescence and atherosclerosis.


Asunto(s)
Aterosclerosis , Senescencia Celular , ARN Largo no Codificante , Animales , Femenino , Humanos , Masculino , Ratones , Enfermedades de la Aorta/patología , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Aterosclerosis/metabolismo , Aterosclerosis/patología , Aterosclerosis/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Modelos Animales de Enfermedad , Hígado/metabolismo , Hígado/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Placa Aterosclerótica , Proproteína Convertasa 9/metabolismo , Proproteína Convertasa 9/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , ARN Largo no Codificante/metabolismo , ARN Largo no Codificante/genética , Transducción de Señal
4.
ACS Omega ; 6(17): 11375-11388, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-34056293

RESUMEN

A series of 3-amino-2-hydroxybenzofused 2-phosphalactones (4a-l) has been synthesized from the Kabachnik-Fields reaction via a facile route from a one-pot three-component reaction of diphenylphosphite with various 2-hydroxybenzaldehyes and heterocyclic amines in a new way of expansion. The in vitro anti-cell proliferation studies by MTT assay have revealed them as potential Panc-1, Miapaca-2, and BxPC-3 pancreatic cell growth inhibitors, and the same is supported by molecular docking, QSAR, and ADMET studies. The MTT assay of their SAHA derivatives against the same cell lines evidenced them as potential HDAC inhibitors and identified 4a, 4b, and 4k substituted with 1,3-thiazol, 1,3,4-thiadiazol, and 5-sulfanyl-1,3,4-thiadiazol moieties on phenyl and diethylamino phenyl rings as potential ones. Additionally, the flow cytometric analyses of 4a, 4b, and 4k against BxPC-3 cells revealed compound 4k as a lead compound that arrests the S phase cell cycle growth at low micromolar concentrations. The ADMET properties have ascertained their inherent pharmacokinetic potentiality, and the wholesome results prompted us to report it as the first study on anti-pancreatic cancer activity of cyclic α-aminophosphonates. Ultimately, this study serves as a good contribution to update the existing knowledge on the anticancer organophosphorus heterocyclic compounds and elevates the scope for generation of new anticancer drugs. Further, the studies like QSAR, drug properties, toxicity risks, and bioactivity scores predicted for them have ascertained the synthesized compounds as newer and potential drug candidates. Hence, this study had augmented the array of α-aminophosphonates by adding a new collection of 3-amino-2-hydroxybenzofused 2-phosphalactones, a class of cyclic α-aminophosphonates, to it, which proved them as potential anti-pancreatic cancer agents.

5.
Int J Nanomedicine ; 11: 5683-5696, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27826190

RESUMEN

An endophytic fungal strain isolated from the leaves of Gymnema sylvestre was identified as Pestalotiopsis microspora VJ1/VS1 based on nucleotide sequencing of internal transcribed spacer region (ITS 1-5.8S-ITS 2) of 18S rRNA gene (NCBI accession number KX213894). In this study, an efficient and ecofriendly approach has been reported for the synthesis of silver nanoparticles (AgNPs) using aqueous culture filtrate of P. microspora. Ultraviolet-visible analysis confirmed the synthesis of AgNPs by showing characteristic absorption peak at 435 nm. Fourier transform infrared spectroscopy analysis revealed the presence of phenolic compounds and proteins in the fungal filtrate, which are plausibly involved in the biosynthesis and capping of AgNPs. Transmission electron microscopy (TEM) showed that the AgNPs were spherical in shape of 2-10 nm in size. Selected area electron diffraction and X-ray diffraction studies determined the crystalline nature of AgNPs with face-centered cubic (FCC) lattice phase. Dynamic light scattering analysis showed that the biosynthesized AgNPs possess high negative zeta potential value of -35.7 mV. Biosynthesized AgNPs were proved to be potential antioxidants by showing effective radical scavenging activity against 2,2'-diphenyl-1-picrylhydrazyl and H2O2 radicals with IC50 values of 76.95±2.96 and 94.95±2.18 µg/mL, respectively. The biosynthesized AgNPs exhibited significant cytotoxic effects against B16F10 (mouse melanoma, IC50 =26.43±3.41 µg/mL), SKOV3 (human ovarian carcinoma, IC50 =16.24±2.48 µg/mL), A549 (human lung adenocarcinoma, IC50 =39.83±3.74 µg/mL), and PC3 (human prostate carcinoma, IC50 =27.71±2.89 µg/mL) cells. The biosynthesized AgNPs were found to be biocompatible toward normal cells (Chinese hamster ovary cell line, IC50 =438.53±4.2 µg/mL). Cytological observations on most susceptible SKOV3 cells revealed concentration-dependent apoptotic changes that include cell membrane blebbing, cell shrinkage, pyknotic nuclei, karyorrhexis followed by destructive fragmentation of nuclei. The results together in this study strongly provided a base for the development of potential and versatile biomedical applications of biosynthesized AgNPs in the near future.


Asunto(s)
Nanopartículas del Metal , Plata/metabolismo , Plata/farmacología , Xylariales/metabolismo , Animales , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Antioxidantes/química , Antioxidantes/metabolismo , Antioxidantes/farmacología , Células CHO , Línea Celular Tumoral , Cricetinae , Cricetulus , Humanos , Ratones , Plata/química
6.
Drug Des Devel Ther ; 10: 3611-3632, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27853354

RESUMEN

Continuous usage of synthetic chemotherapeutic drugs causes adverse effects, which prompted for the development of alternative therapeutics for gastric cancer from natural source. This study was carried out with a specific aim to screen gastroprotective compounds from the fruits of Syzygium alternifolium (Myrtaceae). Three flavonoids, namely, 1) 5-hydroxy-7,4'-dimethoxy-6,8-di-C-methylflavone, 2) kaempferol-3-O-ß-d-glucopyranoside, and 3) kaempferol-3-O-α-l-rhamnopyranoside were isolated from the above medicinal plant by employing silica gel column chromatography and are characterized by NMR techniques. Antigastric cancer activity of these flavonoids was examined on AGS cell lines followed by cell cycle progression assay. In addition, pharmacophore-based screening and molecular dynamics of protein-ligand complex were carried out to identify potent scaffolds. The results showed that compounds 2 and 3 exhibited significant cytotoxic effect, whereas compound 1 showed moderate effect on AGS cells by inhibiting G2/M phase of cell cycle. Molecular docking analysis revealed that compound 2 has higher binding energies on human growth factor receptor-2 (HER2). The constructed pharmacophore models reveal that the compounds have more number of H-bond Acc/Don features which contribute to the inhibition of HER2 activity. By selecting these features, 34 hits were retrieved using the query compound 2. Molecular dynamic simulations (MDS) of protein-ligand complexes demonstrated conspicuous inhibition of HER2 as evidenced by dynamic trajectory analysis. Based on these results, the compound ZINC67903192 was identified as promising HER2 inhibitor against gastric cancer. The present work provides a basis for the discovery a new class of scaffolds from natural products for gastric carcinoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas/farmacología , Receptor ErbB-2/antagonistas & inhibidores , Neoplasias Gástricas/tratamiento farmacológico , Syzygium/química , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/metabolismo , Sitios de Unión , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cromatografía en Gel , Relación Dosis-Respuesta a Droga , Descubrimiento de Drogas/métodos , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/metabolismo , Frutas , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Espectroscopía de Resonancia Magnética , Terapia Molecular Dirigida , Fitoterapia , Plantas Medicinales , Unión Proteica , Conformación Proteica , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/aislamiento & purificación , Inhibidores de Proteínas Quinasas/metabolismo , Relación Estructura-Actividad Cuantitativa , Receptor ErbB-2/química , Receptor ErbB-2/metabolismo , Transducción de Señal/efectos de los fármacos , Neoplasias Gástricas/enzimología , Neoplasias Gástricas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA