RESUMEN
Dominance of neotropical tree communities by a few species is widely documented, but dominant trees show a variety of distributional patterns still poorly understood. Here, we used 503 forest inventory plots (93,719 individuals ≥2.5 cm diameter, 2609 species) to explore the relationships between local abundance, regional frequency and spatial aggregation of dominant species in four main habitat types in western Amazonia. Although the abundance-occupancy relationship is positive for the full dataset, we found that among dominant Amazonian tree species, there is a strong negative relationship between local abundance and regional frequency and/or spatial aggregation across habitat types. Our findings suggest an ecological trade-off whereby dominant species can be locally abundant (local dominants) or regionally widespread (widespread dominants), but rarely both (oligarchs). Given the importance of dominant species as drivers of diversity and ecosystem functioning, unravelling different dominance patterns is a research priority to direct conservation efforts in Amazonian forests.
Asunto(s)
Ecosistema , Bosques , Humanos , Árboles , Brasil , BiodiversidadRESUMEN
Abstract An insect gall inventory was carried out in two reserves of the Peruvian Amazon, Allpahuayo-Mishana National Reserve and Quistococha Regional Reserve, both situated in Iquitos, northeastern Peru. Four vegetation types were surveyed between December, 2021 and December, 2022: terra firme forest, white-sand wet forest, and white-sand dry forest in Allpahuayo-Mishana National Reserve, and palm swamp forest in Quistococha Regional Reserve. Overall, we found 262 gall morphotypes, distributed across 75 host species representing 66 plant genera and 30 families. Fabaceae was the plant family with the greatest number of gall morphotypes (n = 48), followed by Calophyllaceae (n = 21) and Euphorbiaceae (n = 20). The plant genera that supported the highest diversity of galls were Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14), and Iryanthera (n = 10). The plant species Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11), and Sloanea parvifructa (n = 10) exhibited the highest richness of galls. Among the host plants, C. utilis stands alone as the only species noted as both endemic to the Amazonian region and bearing a Vulnerable (VU) conservation status. The leaves were the most attacked organs (90% of all galls). Most morphotypes are glabrous (89%), green (67%), globoid (53%), and one-chambered (91%). We found galling insects belonging to the orders Diptera, Thysanoptera, Lepidoptera, and Hemiptera. The galling insects of Cecidomyiidae (Diptera) were the most common, inducing 22% of the gall morphotypes. In addition to the gallers, we also observed the presence of successors, cecidophages, and parasitoids. Among the sampled vegetation types, the terra firme forest presented the highest richness of gall morphotypes and host plant species. This is the first systematic inventory of insect galls in this part of the Peruvian Amazon.
Resumo Um inventário de galhas de insetos foi realizado em duas reservas da Amazônia peruana, Reserva Nacional Allpahuayo-Mishana e Reserva Regional Quistococha, ambas situadas em Iquitos, nordeste do Peru. Quatro tipos de vegetação foram pesquisados entre dezembro de 2021 e dezembro de 2022: floresta de terra firme, floresta úmida de areia branca e floresta seca de areia branca na Reserva Nacional Allpahuayo-Mishana, e floresta de pântano de palmeiras na Reserva Regional Quistococha. No total, encontramos 262 morfotipos de galhas, distribuídos em 75 espécies hospedeiras representando 66 gêneros de plantas e 30 famílias. Fabaceae foi a família de plantas com o maior número de morfotipos de galhas (n = 48), seguida por Calophyllaceae (n = 21) e Euphorbiaceae (n = 20). Os gêneros de plantas que apresentaram a maior diversidade de galhas foram Caraipa (n = 17), Eschweilera (n = 16), Tapirira (n = 16), Micrandra (n = 14) e Iryanthera (n = 10). As espécies de plantas Tapirira guianensis (n = 16), Caraipa utilis (n = 14), Micrandra elata (n = 14), Eschweilera coriacea (n = 11) e Sloanea parvifructa (n = 10) apresentaram a maior riqueza de galhas. Dentre as plantas hospedeiras, C. utilis destaca-se como a única espécie listada como endêmica da região amazônica e com um status de conservação Vulnerável (VU). As folhas foram os órgãos mais atacados (90% de todas as galhas). A maioria dos morfotipos é glabra (89%), verde (67%), globoide (53%) e possui apenas uma câmara interna (91%). Encontramos insetos galhadores pertencentes às ordens Diptera, Thysanoptera, Lepidoptera e Hemiptera. Os insetos galhadores da família Cecidomyiidae (Diptera) foram os mais comuns, induzindo 22% dos morfotipos de galhas. Além dos galhadores, também observamos a presença de sucessores, cecidófagos e parasitoides. Entre os tipos de vegetação amostrados, a floresta de terra firme apresentou a maior riqueza de morfotipos de galhas e espécies de plantas hospedeiras. Este é o primeiro inventário sistemático de galhas de insetos nesta região da Amazônia peruana.
RESUMEN
Non-structural carbohydrates (NSC) are major substrates for plant metabolism and have been implicated in mediating drought-induced tree mortality. Despite their significance, NSC dynamics in tropical forests remain little studied. We present leaf and branch NSC data for 82 Amazon canopy tree species in six sites spanning a broad precipitation gradient. During the wet season, total NSC (NSCT) concentrations in both organs were remarkably similar across communities. However, NSCT and its soluble sugar (SS) and starch components varied much more across sites during the dry season. Notably, the proportion of leaf NSCT in the form of SS (SS:NSCT) increased greatly in the dry season in almost all species in the driest sites, implying an important role of SS in mediating water stress in these sites. This adjustment of leaf NSC balance was not observed in tree species less-adapted to water deficit, even under exceptionally dry conditions. Thus, leaf carbon metabolism may help to explain floristic sorting across water availability gradients in Amazonia and enable better prediction of forest responses to future climate change.
Asunto(s)
Carbohidratos/análisis , Sequías , Bosques , Estaciones del Año , Árboles/metabolismo , Agua/metabolismo , Bolivia , Brasil , Metabolismo de los Hidratos de Carbono , Cambio Climático , Geografía , Perú , Hojas de la Planta/metabolismo , Azúcares/metabolismo , Árboles/clasificación , Clima TropicalRESUMEN
The forests of Amazonia are among the most biodiverse plant communities on Earth. Given the immediate threats posed by climate and land-use change, an improved understanding of how this extraordinary biodiversity is spatially organized is urgently required to develop effective conservation strategies. Most Amazonian tree species are extremely rare but a few are common across the region. Indeed, just 227 'hyperdominant' species account for >50% of all individuals >10 cm diameter at 1.3 m in height. Yet, the degree to which the phenomenon of hyperdominance is sensitive to tree size, the extent to which the composition of dominant species changes with size class and how evolutionary history constrains tree hyperdominance, all remain unknown. Here, we use a large floristic dataset to show that, while hyperdominance is a universal phenomenon across forest strata, different species dominate the forest understory, midstory and canopy. We further find that, although species belonging to a range of phylogenetically dispersed lineages have become hyperdominant in small size classes, hyperdominants in large size classes are restricted to a few lineages. Our results demonstrate that it is essential to consider all forest strata to understand regional patterns of dominance and composition in Amazonia. More generally, through the lens of 654 hyperdominant species, we outline a tractable pathway for understanding the functioning of half of Amazonian forests across vertical strata and geographical locations.
Asunto(s)
Bosques , Árboles , Biodiversidad , Brasil , HumanosRESUMEN
The carbon sink capacity of tropical forests is substantially affected by tree mortality. However, the main drivers of tropical tree death remain largely unknown. Here we present a pan-Amazonian assessment of how and why trees die, analysing over 120,000 trees representing > 3800 species from 189 long-term RAINFOR forest plots. While tree mortality rates vary greatly Amazon-wide, on average trees are as likely to die standing as they are broken or uprooted-modes of death with different ecological consequences. Species-level growth rate is the single most important predictor of tree death in Amazonia, with faster-growing species being at higher risk. Within species, however, the slowest-growing trees are at greatest risk while the effect of tree size varies across the basin. In the driest Amazonian region species-level bioclimatic distributional patterns also predict the risk of death, suggesting that these forests are experiencing climatic conditions beyond their adaptative limits. These results provide not only a holistic pan-Amazonian picture of tree death but large-scale evidence for the overarching importance of the growth-survival trade-off in driving tropical tree mortality.
Asunto(s)
Ecología , Bosques , Árboles/crecimiento & desarrollo , Biomasa , Brasil , Dióxido de Carbono , Secuestro de Carbono , Ecosistema , Monitoreo del Ambiente , Modelos Biológicos , Modelos de Riesgos Proporcionales , Factores de Riesgo , Clima TropicalRESUMEN
Competition among trees is an important driver of community structure and dynamics in tropical forests. Neighboring trees may impact an individual tree's growth rate and probability of mortality, but large-scale geographic and environmental variation in these competitive effects has yet to be evaluated across the tropical forest biome. We quantified effects of competition on tree-level basal area growth and mortality for trees ≥10-cm diameter across 151 ~1-ha plots in mature tropical forests in Amazonia and tropical Africa by developing nonlinear models that accounted for wood density, tree size, and neighborhood crowding. Using these models, we assessed how water availability (i.e., climatic water deficit) and soil fertility influenced the predicted plot-level strength of competition (i.e., the extent to which growth is reduced, or mortality is increased, by competition across all individual trees). On both continents, tree basal area growth decreased with wood density and increased with tree size. Growth decreased with neighborhood crowding, which suggests that competition is important. Tree mortality decreased with wood density and generally increased with tree size, but was apparently unaffected by neighborhood crowding. Across plots, variation in the plot-level strength of competition was most strongly related to plot basal area (i.e., the sum of the basal area of all trees in a plot), with greater reductions in growth occurring in forests with high basal area, but in Amazonia, the strength of competition also varied with plot-level wood density. In Amazonia, the strength of competition increased with water availability because of the greater basal area of wetter forests, but was only weakly related to soil fertility. In Africa, competition was weakly related to soil fertility and invariant across the shorter water availability gradient. Overall, our results suggest that competition influences the structure and dynamics of tropical forests primarily through effects on individual tree growth rather than mortality and that the strength of competition largely depends on environment-mediated variation in basal area.
Asunto(s)
Bosques , Madera , África , Brasil , Ecosistema , Clima TropicalRESUMEN
Structurally intact tropical forests sequestered about half of the global terrestrial carbon uptake over the 1990s and early 2000s, removing about 15 per cent of anthropogenic carbon dioxide emissions1-3. Climate-driven vegetation models typically predict that this tropical forest 'carbon sink' will continue for decades4,5. Here we assess trends in the carbon sink using 244 structurally intact African tropical forests spanning 11 countries, compare them with 321 published plots from Amazonia and investigate the underlying drivers of the trends. The carbon sink in live aboveground biomass in intact African tropical forests has been stable for the three decades to 2015, at 0.66 tonnes of carbon per hectare per year (95 per cent confidence interval 0.53-0.79), in contrast to the long-term decline in Amazonian forests6. Therefore the carbon sink responses of Earth's two largest expanses of tropical forest have diverged. The difference is largely driven by carbon losses from tree mortality, with no detectable multi-decadal trend in Africa and a long-term increase in Amazonia. Both continents show increasing tree growth, consistent with the expected net effect of rising atmospheric carbon dioxide and air temperature7-9. Despite the past stability of the African carbon sink, our most intensively monitored plots suggest a post-2010 increase in carbon losses, delayed compared to Amazonia, indicating asynchronous carbon sink saturation on the two continents. A statistical model including carbon dioxide, temperature, drought and forest dynamics accounts for the observed trends and indicates a long-term future decline in the African sink, whereas the Amazonian sink continues to weaken rapidly. Overall, the uptake of carbon into Earth's intact tropical forests peaked in the 1990s. Given that the global terrestrial carbon sink is increasing in size, independent observations indicating greater recent carbon uptake into the Northern Hemisphere landmass10 reinforce our conclusion that the intact tropical forest carbon sink has already peaked. This saturation and ongoing decline of the tropical forest carbon sink has consequences for policies intended to stabilize Earth's climate.
Asunto(s)
Dióxido de Carbono/metabolismo , Secuestro de Carbono , Bosques , Árboles/metabolismo , Clima Tropical , África , Atmósfera/química , Biomasa , Brasil , Sequías , Historia del Siglo XX , Historia del Siglo XXI , Modelos Teóricos , TemperaturaRESUMEN
Global patterns of species and evolutionary diversity in plants are primarily determined by a temperature gradient, but precipitation gradients may be more important within the tropics, where plant species richness is positively associated with the amount of rainfall. The impact of precipitation on the distribution of evolutionary diversity, however, is largely unexplored. Here we detail how evolutionary diversity varies along precipitation gradients by bringing together a comprehensive database on the composition of angiosperm tree communities across lowland tropical South America (2,025 inventories from wet to arid biomes), and a new, large-scale phylogenetic hypothesis for the genera that occur in these ecosystems. We find a marked reduction in the evolutionary diversity of communities at low precipitation. However, unlike species richness, evolutionary diversity does not continually increase with rainfall. Rather, our results show that the greatest evolutionary diversity is found in intermediate precipitation regimes, and that there is a decline in evolutionary diversity above 1,490 mm of mean annual rainfall. If conservation is to prioritise evolutionary diversity, areas of intermediate precipitation that are found in the South American 'arc of deforestation', but which have been neglected in the design of protected area networks in the tropics, merit increased conservation attention.
Asunto(s)
Biodiversidad , Evolución Biológica , Lluvia , Árboles , Clima Tropical , Cambio Climático , Conservación de los Recursos Naturales , Cadenas de Markov , Filogenia , Dispersión de las Plantas , América del Sur , Especificidad de la EspecieRESUMEN
Offset schemes help avoid or revert habitat loss through protection of existing habitat (avoided deforestation), through the restoration of degraded areas (natural regrowth), or both. The spatial scale of an offset scheme may influence which of these 2 outcomes is favored and is an important aspect of the scheme's design. However, how spatial scale influences the trade-offs between the preservation of existing habitat and restoration of degraded areas is poorly understood. We used the largest forest offset scheme in the world, which is part of the Brazilian Forest Code, to explore how implementation at different spatial scales may affect the outcome in terms of the area of avoided deforestation and area of regrowth. We employed a numerical simulation of trade between buyers (i.e., those who need to offset past deforestation) and sellers (i.e., landowners with exceeding native vegetation) in the Brazilian Amazon to estimate potential avoided deforestation and regrowth at different spatial scales of implementation. Allowing offsets over large spatial scales led to an area of avoided deforestation 12 times greater than regrowth, whereas restricting offsets to small spatial scales led to an area of regrowth twice as large as avoided deforestation. The greatest total area (avoided deforestation and regrowth combined) was conserved when the spatial scale of the scheme was small, especially in locations that were highly deforested. To maximize conservation gains from avoided deforestation and regrowth, the design of the Brazilian forest-offset scheme should focus on restricting the spatial scale in which offsets occur. Such a strategy could help ensure conservation benefits are localized and promote the recovery of degraded areas in the most threatened forest landscapes.
Los esquemas de compensación ayudan a evitar o revertir la pérdida de hábitat mediante la protección del hábitat existente (deforestación evitada), mediante la restauración de áreas degradadas (recrecimiento natural) o ambos. La escala espacial de una mitigación puede influir en cuál de ellos es seleccionado y es un aspecto importante del diseño de esquema. Sin embargo, no se entiende bien cómo influye la escala espacial en las compensaciones entre la preservación del hábitat existente y la restauración de áreas degradadas. Utilizamos el esquema de compensación forestal más grande del mundo, que forma parte del Código Forestal Brasileño, para explorar cómo la implementación a diferentes escalas espaciales puede afectar el resultado en términos de la superficie de deforestación evitada y el área de recrecimiento. Empleamos una simulación numérica del comercio entre compradores (i. e., aquellos que necesitan compensar la deforestación pasada) y vendedores (i. e., propietarios con exceso de vegetación nativa) en la Amazonía brasileña para estimar deforestación evitada y el recrecimiento a diferentes escalas espaciales de implementación. Permitir compensaciones en grandes escalas espaciales dio lugar a una superficie de deforestación evitada 12 veces mayor que de recrecimiento, mientras que restringir compensaciones a pequeñas escalas espaciales dio lugar a una superficie de recrecimiento dos veces mayor que la deforestación evitada. La mayor superficie total (deforestación evitada y recrecimiento combinados) se conservó cuando la escala espacial del esquema era pequeña, especialmente en localidades muy deforestadas. Para maximizar los beneficios de conservación derivados de la deforestación evitada y el recrecimiento, el diseño del esquema brasileño de compensaciones debe centrarse en restringir la escala espacial en la que se producen las compensaciones. Esta estrategia ayudaría a garantizar que los beneficios de la conservación sean localizados y promuevan la recuperación de zonas degradadas en los paisajes forestales más amenazados.
Asunto(s)
Conservación de los Recursos Naturales , Bosques , Brasil , EcosistemaRESUMEN
As countries advance in greenhouse gas (GHG) accounting for climate change mitigation, consistent estimates of aboveground net biomass change (∆AGB) are needed. Countries with limited forest monitoring capabilities in the tropics and subtropics rely on IPCC 2006 default ∆AGB rates, which are values per ecological zone, per continent. Similarly, research into forest biomass change at a large scale also makes use of these rates. IPCC 2006 default rates come from a handful of studies, provide no uncertainty indications and do not distinguish between older secondary forests and old-growth forests. As part of the 2019 Refinement to the 2006 IPCC Guidelines for National Greenhouse Gas Inventories, we incorporate ∆AGB data available from 2006 onwards, comprising 176 chronosequences in secondary forests and 536 permanent plots in old-growth and managed/logged forests located in 42 countries in Africa, North and South America and Asia. We generated ∆AGB rate estimates for younger secondary forests (≤20 years), older secondary forests (>20 years and up to 100 years) and old-growth forests, and accounted for uncertainties in our estimates. In tropical rainforests, for which data availability was the highest, our ∆AGB rate estimates ranged from 3.4 (Asia) to 7.6 (Africa) Mg ha-1 year-1 in younger secondary forests, from 2.3 (North and South America) to 3.5 (Africa) Mg ha-1 year-1 in older secondary forests, and 0.7 (Asia) to 1.3 (Africa) Mg ha-1 year-1 in old-growth forests. We provide a rigorous and traceable refinement of the IPCC 2006 default rates in tropical and subtropical ecological zones, and identify which areas require more research on ∆AGB. In this respect, this study should be considered as an important step towards quantifying the role of tropical and subtropical forests as carbon sinks with higher accuracy; our new rates can be used for large-scale GHG accounting by governmental bodies, nongovernmental organizations and in scientific research.
Asunto(s)
Árboles , Clima Tropical , África , Asia , Biomasa , Carbono , Bosques , América del SurRESUMEN
The forests of western Amazonia are among the most diverse tree communities on Earth, yet this exceptional diversity is distributed highly unevenly within and among communities. In particular, a small number of dominant species account for the majority of individuals, whereas the large majority of species are locally and regionally extremely scarce. By definition, dominant species contribute little to local species richness (alpha diversity), yet the importance of dominant species in structuring patterns of spatial floristic turnover (beta diversity) has not been investigated. Here, using a network of 207 forest inventory plots, we explore the role of dominant species in determining regional patterns of beta diversity (community-level floristic turnover and distance-decay relationships) across a range of habitat types in northern lowland Peru. Of the 2,031 recorded species in our data set, only 99 of them accounted for 50% of individuals. Using these 99 species, it was possible to reconstruct the overall features of regional beta diversity patterns, including the location and dispersion of habitat types in multivariate space, and distance-decay relationships. In fact, our analysis demonstrated that regional patterns of beta diversity were better maintained by the 99 dominant species than by the 1,932 others, whether quantified using species-abundance data or species presence-absence data. Our results reveal that dominant species are normally common only in a single forest type. Therefore, dominant species play a key role in structuring western Amazonian tree communities, which in turn has important implications, both practically for designing effective protected areas, and more generally for understanding the determinants of beta diversity patterns.
Asunto(s)
Biodiversidad , Árboles , Ecosistema , Bosques , Perú , Clima TropicalRESUMEN
Most of the planet's diversity is concentrated in the tropics, which includes many regions undergoing rapid climate change. Yet, while climate-induced biodiversity changes are widely documented elsewhere, few studies have addressed this issue for lowland tropical ecosystems. Here we investigate whether the floristic and functional composition of intact lowland Amazonian forests have been changing by evaluating records from 106 long-term inventory plots spanning 30 years. We analyse three traits that have been hypothesized to respond to different environmental drivers (increase in moisture stress and atmospheric CO2 concentrations): maximum tree size, biogeographic water-deficit affiliation and wood density. Tree communities have become increasingly dominated by large-statured taxa, but to date there has been no detectable change in mean wood density or water deficit affiliation at the community level, despite most forest plots having experienced an intensification of the dry season. However, among newly recruited trees, dry-affiliated genera have become more abundant, while the mortality of wet-affiliated genera has increased in those plots where the dry season has intensified most. Thus, a slow shift to a more dry-affiliated Amazonia is underway, with changes in compositional dynamics (recruits and mortality) consistent with climate-change drivers, but yet to significantly impact whole-community composition. The Amazon observational record suggests that the increase in atmospheric CO2 is driving a shift within tree communities to large-statured species and that climate changes to date will impact forest composition, but long generation times of tropical trees mean that biodiversity change is lagging behind climate change.
Asunto(s)
Biodiversidad , Cambio Climático , Bosques , Brasil , Dióxido de Carbono , Ecosistema , Estaciones del Año , Árboles/clasificación , Árboles/fisiología , Clima Tropical , AguaRESUMEN
The Amazon rain forest sustains the world's highest tree diversity, but it remains unclear why some clades of trees are hyperdiverse, whereas others are not. Using dated phylogenies, estimates of current species richness and trait and demographic data from a large network of forest plots, we show that fast demographic traits--short turnover times--are associated with high diversification rates across 51 clades of canopy trees. This relationship is robust to assuming that diversification rates are either constant or decline over time, and occurs in a wide range of Neotropical tree lineages. This finding reveals the crucial role of intrinsic, ecological variation among clades for understanding the origin of the remarkable diversity of Amazonian trees and forests.
Asunto(s)
Biodiversidad , Modelos Biológicos , Árboles/fisiología , América del Sur , Clima TropicalRESUMEN
Landscape-scale gap-size frequency distributions in tropical forests are a poorly studied but key ecological variable. Currently, a scale gap currently exists between local-scale field-based studies and those employing regional-scale medium-resolution satellite data. Data at landscape scales but of fine resolution would, however, facilitate investigation into a range of ecological questions relating to gap dynamics. These include whether canopy disturbances captured in permanent sample plots (PSPs) are representative of those in their surrounding landscape, and whether disturbance regimes vary with forest type. Here, therefore, we employ airborne LiDAR data captured over 142.5 km2 of mature, swamp, and regenerating forests in southeast Peru to assess the landscape-scale disturbance at a sampling resolution of up to 2 m. We find that this landscape is characterized by large numbers of small gaps; large disturbance events are insignificant and infrequent. Of the total number of gaps that are 2 m2 or larger in area, just 0.45% were larger than 100 m2, with a power-law exponent (alpha) value of the gap-size frequency distribution of 2.22. However, differences in disturbance regimes are seen among different forest types, with a significant difference in the alpha value of the gap-size frequency distribution observed for the swamp/regenerating forests compared with the mature forests at higher elevations. Although a relatively small area of the total forest of this region was investigated here, this study presents an unprecedented assessment of this landscape with respect to its gap dynamics. This is particularly pertinent given the range of forest types present in the landscape and the differences observed. The coupling of detailed insights into forest properties and growth provided by PSPs with the broader statistics of disturbance events using remote sensing is recommended as a strong basis for scaling-up estimates of landscape and regional-scale carbon balance.
Asunto(s)
Ecosistema , Árboles , Perú , Tecnología de Sensores Remotos , Clima TropicalRESUMEN
The rate of above-ground woody biomass production, W(P), in some western Amazon forests exceeds those in the east by a factor of 2 or more. Underlying causes may include climate, soil nutrient limitations and species composition. In this modelling paper, we explore the implications of allowing key nutrients such as N and P to constrain the photosynthesis of Amazon forests, and also we examine the relationship between modelled rates of photosynthesis and the observed gradients in W(P). We use a model with current understanding of the underpinning biochemical processes as affected by nutrient availability to assess: (i) the degree to which observed spatial variations in foliar [N] and [P] across Amazonia affect stand-level photosynthesis; and (ii) how these variations in forest photosynthetic carbon acquisition relate to the observed geographical patterns of stem growth across the Amazon Basin. We find nutrient availability to exert a strong effect on photosynthetic carbon gain across the Basin and to be a likely important contributor to the observed gradient in W(P). Phosphorus emerges as more important than nitrogen in accounting for the observed variations in productivity. Implications of these findings are discussed in the context of future tropical forests under a changing climate.
Asunto(s)
Carbono/química , Modelos Biológicos , Fotosíntesis , Hojas de la Planta/química , Árboles/química , Atmósfera/química , Brasil , Dióxido de Carbono/química , Simulación por Computador , Nitrógeno/química , Fósforo/química , Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/química , Tallos de la Planta/crecimiento & desarrollo , Suelo/química , Árboles/crecimiento & desarrollo , Clima Tropical , Madera/química , Madera/crecimiento & desarrolloRESUMEN
La cantidad de madera muerta o necromasa representa una importante porción de la biomasa y de los nutrientes en los bosques tropicales. Los objetivos de este estudio son: 1) hacer una evaluación y comparación entre la necromasa de los bosques de altura o tierra firme y los bosques inundables o bajíos, (2) estudiar las relaciones entre la necromasa, la biomasa aérea y la densidad de madera del bosque, y (3) proporcionar una primera estimación de la necromasa para todo el departamento de Madre de Dios. La necromasa gruesa y la masa aérea vegetativa fueron estudiados en tres diferentes lugares utilizando parcelas permanentes y líneas de intersección. El promedio del volumen de madera muerta gruesa fue de 72,9 m³ ha
Asunto(s)
Ciclo del Carbono , Compuestos Inorgánicos de Carbono , Ecosistema Amazónico , Madera , Perú , ÁrbolesRESUMEN
Species' functional traits may help determine rates of carbon gain, with physiological and morphological trade-offs relating to shade tolerance affecting photosynthetic capacity and carbon allocation strategies. However, few studies have examined these trade-offs from the perspective of whole-plant biomass gain of adult trees. We compared tree-level annual diameter increments and annual above-ground biomass (AGB) increments in eight long-term plots in hyper-diverse northwest Amazonia to wood density (rho; a proxy for shade tolerance), whilst also controlling for resource supply (light and soil fertility). rho and annual diameter increment were negatively related, confirming expected differences in allocation associated with shade tolerance, such that light-demanding species allocate a greater proportion of carbon to diameter gain at the expense of woody tissue density. However, contrary to expectations, we found a positive relationship between rho and annual AGB increment in more fertile sites, although AGB gain did not differ significantly with rho class on low-fertility sites. Whole-plant carbon gain may be greater in shade-tolerant species due to higher total leaf area, despite lower leaf-level carbon assimilation rates. Alternatively, rates of carbon loss may be higher in more light-demanding species: higher rates of litterfall, respiration or allocation to roots, are all plausible mechanisms. However, the relationships between rho and AGB and diameter increments were weak; resource availability always exerted a stronger influence on tree growth rates.
Asunto(s)
Biomasa , Luz , Árboles/crecimiento & desarrollo , Perú , Fotosíntesis , SueloRESUMEN
La composición florística de 17 parcelas (0,5 - 2 ha) de Jenaro Herrera, Loreto, Perú fue analizada utilizando el método multivariado de agrupamiento por promedio aritmético de grupos de pares no ponderados (UPGMA). Nueve grupos florísticos fueron reportados y correspondieron a los siguientes tipos de bosque descritos anteriormente en la zona: 1) bosque ribereño, un grupo; 2) bosque latifoliado de aguas negras, dos grupos; 3) bosque de arena blanca, dos grupos(más un grupo con parcela que incluye parte de otro tipo de bosque); 4) bosque de terraza, un grupo; 5) bosque de palmeras de aguas negras, un grupo; y 6) bosque de palmeras de terraza baja, un grupo. Problemas taxonómicos en el nivel de especies fueron minimizados con la remoción de las especies raras.
The floristic composition of 17 plots (0,5 - 2 ha) of Jenaro Herrera, Loreto, Peru were analyzed using the unweighted pair group method with arithmetic mean (UPGMA). Nine floristic groups were reported corresponding to the following types of forests described in the study area before: 1) riverine forest -one group, 2) black water broad leaf forest -two groups, 3) white sand forest -two groups (plus one group with a plot including part of another type of forest), 4) terrace forest -one group, 5) black water palm forest -one group, and 6) low terrace palm forest -one group. Taxonomic problems were detected in species level; however, these were minimized when rare species were removed.
Asunto(s)
Asteraceae/clasificación , Flora/clasificaciónRESUMEN
The stocks and dynamics of coarse woody debris (CWD) are significant components of the carbon cycle within tropical forests. However, to date, there have been no reports of CWD stocks and fluxes from the approximately 1.3 million km(2) of lowland western Amazonian forests. Here, we present estimates of CWD stocks and annual CWD inputs from forests in southern Peru. Total stocks were low compared to other tropical forest sites, whether estimated by line-intercept sampling (24.4 +/- 5.3 Mg ha(-1)) or by complete inventories within 11 permanent plots (17.7 +/- 2.4 Mg ha(-1)). However, annual inputs, estimated from long-term data on tree mortality rates in the same plots, were similar to other studies (3.8 +/- 0.2 or 2.9 +/- 0.2 Mg ha(-1) year(-1), depending on the equation used to estimate biomass). Assuming the CWD pool is at steady state, the turnover time of coarse woody debris is low (4.7 +/- 2.6 or 6.1 +/- 2.6 years). These results indicate that these sites have not experienced a recent, large-scale disturbance event and emphasise the distinctive, rapid nature of carbon cycling in these western Amazonian forests.