Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(36): 48526-48535, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39224930

RESUMEN

Distinct advantages of surface enhanced Raman scattering (SERS) in molecular detection can benefit the enantioselective discrimination of specific molecular configurations. However, many of the recent methods still lack versatility and require customized anchors to chemically interact with the studied analyte. In this work, we propose the utilization of helicoid-shaped chiral gold nanoparticles arranged in an ordered array on a gold grating surface for enantioselective SERS recognition. This arrangement ensured a homogeneous distribution of chiral plasmonic hot spots and facilitated the enhancement of the SERS response of targeted analytes through plasmon coupling between gold helicoid multimers (formed in the grating valleys) and adjacent regions of the gold grating. Naproxen enantiomers (R(+) and S(-)) were employed as model compounds, revealing a clear dependence of their SERS response on the chirality of the gold helicoids. Additionally, propranolol and penicillamine enantiomers were used to validate the universality of the proposed approach. Finally, numerical simulations were conducted to elucidate the roles of intensified local electric field and optical helicity density on the SERS signal intensity and on the chirality of the nanoparticles and enantiomers. Unlike previously reported methods, our approach relies on the excitation of a chiral plasmonic near-field and its interaction with the chiral environment of analyte molecules, obviating the need for the enantioselective entrapment of targeted molecules. Moreover, our method is not limited to specific analyte classes and can be applied to a broad range of chiral molecules.

2.
J Phys Chem Lett ; 11(14): 5770-5776, 2020 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-32603124

RESUMEN

Plasmon-assisted transformations of organic compounds represent a novel opportunity for conversion of light to chemical energy at room temperature. However, the mechanistic insights of interaction between plasmon energy and organic molecules is still under debate. Herein, we proposed a comprehensive study of the plasmon-assisted reaction mechanism using unsymmetric iodonium salts (ISs) as an organic probe. The experimental and theoretical analysis allow us to exclude the possible thermal effect or hot electron transfer. We found that plasmon interaction with unsymmetrical ISs led to the intramolecular excitation of electron followed by the regioselective cleavage of C-I bond with the formation of electron-rich radical species, which cannot be explained by the hot electron excitation or thermal effects. The high regioselectivity is explained by the direct excitation of electron to LUMO with the formation of a dissociative excited state according to quantum-chemical modeling, which provides novel opportunities for the fine control of reactivity using plasmon energy.

3.
ACS Sens ; 5(1): 50-56, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31826609

RESUMEN

The chiral recognition of organic compounds is of vital importance in the field of pharmacology and medicine. Unfortunately, the common analytical routes used in this field are significantly restricted by time spent and equipment demands. In this work, we propose an unprecedented alternative, aimed at enantiomer discrimination and estimation of their concentrations in an uncomplicated and instantaneous manner. The proposed approach is based on the creation of an optical fiber probe with two pronounced plasmonic bands attributed to gold and silver. The gold or silver surfaces were grafted with moieties, able to enunciating entrap chiral amines from solution, resulting in a wavelength shift corresponding to each plasmonic metal. As a model compound of chiral amine, we chose the DOPA, also taking in mind its high medical relevancy. For chiral detection, the optical fiber probe was simply immersed in an analytical solution of DOPA, and the selective shift of gold or silver plasmon bands was observed in the reflected light depending on DOPA chirality. The observed shifts depend on the concentration of DOPA enantiomers. In the case of a racemic mixture, the shifts of both plasmonic bands emerge, making possible the simultaneous determination of enantiomer concentrations and their ratio. The analytical cycle takes several minutes and requires very simple laboratory equipment.


Asunto(s)
Tecnología de Fibra Óptica/métodos , Fibras Ópticas/normas , Resonancia por Plasmón de Superficie/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA